add speed test
This commit is contained in:
parent
4cb94d2687
commit
0ee9612f40
12
speed_test/accelerate/ddp.yaml
Normal file
12
speed_test/accelerate/ddp.yaml
Normal file
|
@ -0,0 +1,12 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config: {}
|
||||
distributed_type: MULTI_GPU
|
||||
fsdp_config: {}
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
18
speed_test/accelerate/deepspeed_stage1.yaml
Normal file
18
speed_test/accelerate/deepspeed_stage1.yaml
Normal file
|
@ -0,0 +1,18 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: true
|
||||
zero_stage: 1
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
18
speed_test/accelerate/deepspeed_stage2.yaml
Normal file
18
speed_test/accelerate/deepspeed_stage2.yaml
Normal file
|
@ -0,0 +1,18 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: true
|
||||
zero_stage: 2
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
19
speed_test/accelerate/deepspeed_stage3.yaml
Normal file
19
speed_test/accelerate/deepspeed_stage3.yaml
Normal file
|
@ -0,0 +1,19 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: true
|
||||
zero3_save_16bit_model: true
|
||||
zero_stage: 3
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
24
speed_test/accelerate/deepspeed_stage3_dynamo.yaml
Normal file
24
speed_test/accelerate/deepspeed_stage3_dynamo.yaml
Normal file
|
@ -0,0 +1,24 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: true
|
||||
zero3_save_16bit_model: true
|
||||
zero_stage: 3
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
dynamo_config:
|
||||
dynamo_backend: INDUCTOR
|
||||
dynamo_mode: default
|
||||
dynamo_use_dynamic: false
|
||||
dynamo_use_fullgraph: false
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
19
speed_test/accelerate/deepspeed_stage3_offload.yaml
Normal file
19
speed_test/accelerate/deepspeed_stage3_offload.yaml
Normal file
|
@ -0,0 +1,19 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: cpu
|
||||
offload_param_device: cpu
|
||||
zero3_init_flag: true
|
||||
zero3_save_16bit_model: true
|
||||
zero_stage: 3
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
19
speed_test/accelerate/fsdp.yaml
Normal file
19
speed_test/accelerate/fsdp.yaml
Normal file
|
@ -0,0 +1,19 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config: {}
|
||||
distributed_type: FSDP
|
||||
downcast_bf16: 'no'
|
||||
fsdp_config:
|
||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||
fsdp_backward_prefetch_policy: BACKWARD_PRE
|
||||
fsdp_offload_params: false
|
||||
fsdp_sharding_strategy: 1
|
||||
fsdp_state_dict_type: FULL_STATE_DICT
|
||||
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: 'bf16'
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
use_cpu: false
|
23
speed_test/accelerate/megatron.yaml
Normal file
23
speed_test/accelerate/megatron.yaml
Normal file
|
@ -0,0 +1,23 @@
|
|||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config: {}
|
||||
distributed_type: MEGATRON_LM
|
||||
downcast_bf16: 'no'
|
||||
fsdp_config: {}
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
megatron_lm_config:
|
||||
megatron_lm_gradient_clipping: 1.0
|
||||
megatron_lm_num_micro_batches: 2
|
||||
megatron_lm_pp_degree: 2
|
||||
megatron_lm_recompute_activations: true
|
||||
megatron_lm_sequence_parallelism: true
|
||||
megatron_lm_tp_degree: 2
|
||||
megatron_lm_use_distributed_optimizer: true
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 4
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
use_cpu: false
|
61
speed_test/accelerate/run.py
Normal file
61
speed_test/accelerate/run.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-04-08 22:44:44
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-04-08 23:15:57
|
||||
FilePath: /Open-Llama/speed_test/accelerate/run.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import time
|
||||
import torch
|
||||
from deepspeed.ops.adam import FusedAdam
|
||||
from accelerate import Accelerator, DistributedType
|
||||
from transformers import LlamaForCausalLM, LlamaConfig
|
||||
|
||||
batch_size = 32
|
||||
seq_length = 2048
|
||||
vocab_size = 32000
|
||||
total_step = 2
|
||||
use_activation_ckpt = True
|
||||
|
||||
class FakeSet(torch.utils.data.Dataset):
|
||||
def __getitem__(self, idx):
|
||||
return torch.randint(0, vocab_size, (seq_length, ))
|
||||
|
||||
def __len__(self):
|
||||
return 1000000000
|
||||
|
||||
accelerator = Accelerator()
|
||||
raw_model = LlamaForCausalLM(
|
||||
LlamaConfig(
|
||||
vocab_size=vocab_size,
|
||||
)
|
||||
)
|
||||
if use_activation_ckpt:
|
||||
raw_model.gradient_checkpointing_enable()
|
||||
optimizer = FusedAdam(raw_model.parameters(), lr=1e-5)
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(FakeSet(), batch_size=batch_size)
|
||||
if accelerator.distributed_type == DistributedType.FSDP:
|
||||
accelerator.print('FSDP')
|
||||
model = accelerator.prepare(raw_model)
|
||||
optimizer, train_loader = accelerator.prepare(optimizer, train_loader)
|
||||
else:
|
||||
model, optimizer, train_loader = accelerator.prepare(raw_model, optimizer, train_loader)
|
||||
|
||||
def train(model, optimizer, train_loader):
|
||||
start_time = time.time()
|
||||
for i, batch in enumerate(train_loader):
|
||||
if i == total_step:
|
||||
break
|
||||
optimizer.zero_grad()
|
||||
out = model(input_ids=batch, labels=batch)
|
||||
loss = out.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
end_time = time.time()
|
||||
return end_time - start_time
|
||||
|
||||
accelerator.print('total time: {}'.format(train(model, optimizer, train_loader)))
|
12
speed_test/accelerate/run.sh
Normal file
12
speed_test/accelerate/run.sh
Normal file
|
@ -0,0 +1,12 @@
|
|||
###
|
||||
# @Author: LiangSong(sl12160010@gmail.com)
|
||||
# @Date: 2023-04-08 22:44:27
|
||||
# @LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
# @LastEditTime: 2023-04-11 21:58:43
|
||||
# @FilePath: /Open-Llama/speed_test/accelerate/run.sh
|
||||
# @Description:
|
||||
#
|
||||
# Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
###
|
||||
total_gpu=8
|
||||
accelerate launch --config_file deepspeed_stage2.yaml --main_process_ip 127.0.0.1 --main_process_port 23335 --num_processes $total_gpu run.py
|
376
speed_test/colossal-ai/run.py
Normal file
376
speed_test/colossal-ai/run.py
Normal file
|
@ -0,0 +1,376 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-04-11 20:07:35
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-04-11 21:56:23
|
||||
FilePath: /Open-Llama/speed_test/colossal-ai/run.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import os
|
||||
from functools import partial
|
||||
from time import time
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import LlamaForCausalLM, LlamaConfig
|
||||
from utils import get_data, get_profile_context, get_tflops, get_time_stamp
|
||||
from packaging import version
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.zero import ColoInitContext, zero_model_wrapper, zero_optim_wrapper
|
||||
|
||||
CAI_VERSION = colossalai.__version__
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument(
|
||||
"--distplan",
|
||||
type=str,
|
||||
default='CAI_Gemini',
|
||||
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp_degree",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--placement",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shardinit",
|
||||
action='store_true',
|
||||
help=
|
||||
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="batch size per DP group of training.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_type",
|
||||
type=str,
|
||||
default="Llama-7B",
|
||||
help="model model scale",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_step",
|
||||
type=int,
|
||||
default=10,
|
||||
help="training iterations for test",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def model_builder(VOCAB_SIZE, checkpoint=False):
|
||||
raw_model = LlamaForCausalLM(
|
||||
LlamaConfig(
|
||||
vocab_size=VOCAB_SIZE,
|
||||
)
|
||||
)
|
||||
if checkpoint:
|
||||
raw_model.gradient_checkpointing_enable()
|
||||
return raw_model
|
||||
|
||||
|
||||
# Parameter Sharding Strategies for Tensor Parallelism
|
||||
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
|
||||
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||
param.set_tensor_spec(*spec)
|
||||
|
||||
|
||||
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
|
||||
split_param_single_dim_tp1d(0, param, pg)
|
||||
|
||||
|
||||
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
|
||||
split_param_single_dim_tp1d(-1, param, pg)
|
||||
|
||||
|
||||
class GPTLMLoss(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, logits, labels):
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
|
||||
def get_cpu_mem():
|
||||
return psutil.Process().memory_info().rss / 1024**2
|
||||
|
||||
|
||||
def get_gpu_mem():
|
||||
return torch.cuda.memory_allocated() / 1024**2
|
||||
|
||||
|
||||
def get_mem_info(prefix=''):
|
||||
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
|
||||
|
||||
|
||||
def get_model_size(model: nn.Module):
|
||||
total_numel = 0
|
||||
for module in model.modules():
|
||||
for p in module.parameters(recurse=False):
|
||||
total_numel += p.numel()
|
||||
return total_numel
|
||||
|
||||
|
||||
def model_size_formatter(numel: int) -> str:
|
||||
GB_SIZE = 10**9
|
||||
MB_SIZE = 10**6
|
||||
KB_SIZE = 10**3
|
||||
if numel >= GB_SIZE:
|
||||
return f'{numel / GB_SIZE:.1f}B'
|
||||
elif numel >= MB_SIZE:
|
||||
return f'{numel / MB_SIZE:.1f}M'
|
||||
elif numel >= KB_SIZE:
|
||||
return f'{numel / KB_SIZE:.1f}K'
|
||||
else:
|
||||
return str(numel)
|
||||
|
||||
|
||||
def set_cpu_maximum_parallelism():
|
||||
conf_str = torch.__config__.parallel_info()
|
||||
inter_str = conf_str.split("hardware_concurrency() : ")[1]
|
||||
max_concurrency = inter_str.split('\n')[0]
|
||||
os.environ["OMP_NUM_THREADS"] = max_concurrency
|
||||
print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.")
|
||||
|
||||
|
||||
# Tensor Parallel
|
||||
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
||||
"""tensor_parallelize
|
||||
Sharding the Model Parameters.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): a torch module to be sharded
|
||||
"""
|
||||
for mn, module in model.named_modules():
|
||||
for pn, param in module.named_parameters(recurse=False):
|
||||
# NOTE() a param maybe shared by two modules
|
||||
if hasattr(param, 'visited'):
|
||||
continue
|
||||
|
||||
# if shard init, then convert param to replica and use the dp-only ProcessGroup
|
||||
param: ColoParameter = param
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
param.set_process_group(pg)
|
||||
|
||||
# shard it w.r.t tp pattern
|
||||
if 'mlp.c_fc' in mn:
|
||||
if 'weight' in pn or 'bias' in pn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
# keep the shape of the output from c_fc
|
||||
param.compute_spec.set_output_replicate(False)
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
elif 'mlp.c_proj' in mn:
|
||||
if 'weight' in pn:
|
||||
split_param_row_tp1d(param, pg) # row slice
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
elif 'wte' in mn or 'wpe' in mn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
elif 'c_attn' in mn or 'c_proj' in mn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
param.visited = True
|
||||
|
||||
|
||||
def main():
|
||||
# version check
|
||||
# this example is supposed to work for versions greater than 0.2.0
|
||||
assert version.parse(CAI_VERSION) >= version.parse("0.2.0")
|
||||
|
||||
set_cpu_maximum_parallelism()
|
||||
args = parse_args()
|
||||
|
||||
# if args.distplan not in ["colossalai", "torch_ddp", "torch_zero", "zero1", "zero2"]:
|
||||
if args.distplan not in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"]:
|
||||
raise TypeError(f"{args.distplan} is error")
|
||||
|
||||
# batch size per DP degree
|
||||
BATCH_SIZE = args.batch_size
|
||||
SEQ_LEN = 2048
|
||||
VOCAB_SIZE = 32000
|
||||
|
||||
NUM_STEPS = args.train_step
|
||||
|
||||
WARMUP_STEPS = 1
|
||||
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
|
||||
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median"
|
||||
PROF_FLAG = False # The flag of profiling, False by default
|
||||
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config={})
|
||||
|
||||
logger = get_dist_logger()
|
||||
logger.info(f"{args.model_type}, {args.distplan}, batch size {BATCH_SIZE}", ranks=[0])
|
||||
|
||||
# build criterion
|
||||
criterion = GPTLMLoss()
|
||||
|
||||
torch.manual_seed(123)
|
||||
if args.distplan.startswith("CAI"):
|
||||
# all param must use the same process group.
|
||||
world_size = torch.distributed.get_world_size()
|
||||
shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None
|
||||
default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None
|
||||
|
||||
if args.shardinit and args.distplan != "CAI_Gemini":
|
||||
raise RuntimeError("You can only use shardinit with CAI_Gemini")
|
||||
|
||||
# build GPT model
|
||||
with ColoInitContext(device=get_current_device(),
|
||||
dtype=torch.half,
|
||||
default_dist_spec=default_dist_spec,
|
||||
default_pg=shard_pg):
|
||||
model = model_builder(VOCAB_SIZE, checkpoint=True)
|
||||
|
||||
tp_pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||
# Tensor Parallelism (TP)
|
||||
# You should notice that v0.1.10 is not compatible with TP degree > 1
|
||||
if args.tp_degree > 1:
|
||||
tensor_parallelize(model, tp_pg)
|
||||
|
||||
# asign running configurations
|
||||
gemini_config = None
|
||||
if args.distplan.startswith("CAI_ZeRO"):
|
||||
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True)
|
||||
elif args.distplan == "CAI_Gemini":
|
||||
gemini_config = dict(strict_ddp_mode=args.tp_degree == 1,
|
||||
device=get_current_device(),
|
||||
placement_policy=args.placement,
|
||||
pin_memory=True,
|
||||
hidden_dim=model.model.config.hidden_size,
|
||||
search_range_mb=128)
|
||||
optim_config = dict(gpu_margin_mem_ratio=0.)
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
# build a highly optimized gpu/cpu optimizer
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
|
||||
if args.distplan == "CAI_ZeRO1":
|
||||
zero_stage = 1
|
||||
elif args.distplan == "CAI_ZeRO2":
|
||||
zero_stage = 2
|
||||
elif args.distplan == "CAI_Gemini":
|
||||
zero_stage = 3
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
# wrap your model and optimizer
|
||||
model = zero_model_wrapper(model, zero_stage, gemini_config)
|
||||
optimizer = zero_optim_wrapper(model, optimizer, optim_config=optim_config)
|
||||
|
||||
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
|
||||
elif args.distplan.startswith("Pytorch"):
|
||||
assert args.tp_degree == 1, "The degree of TP should be 1 for DDP examples."
|
||||
model = model_builder(VOCAB_SIZE, checkpoint=True).cuda()
|
||||
model = DDP(model)
|
||||
if args.distplan.endswith("DDP"):
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
elif args.distplan.endswith("ZeRO"):
|
||||
from torch.distributed.optim import ZeroRedundancyOptimizer
|
||||
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=torch.optim.Adam, lr=1e-3)
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
# model is shared after TP
|
||||
numel = get_model_size(model)
|
||||
logger.info(f"the size of testing model size is {model_size_formatter(numel)}.")
|
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
||||
|
||||
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
|
||||
# = (batch_per_DP_group * dp_degree) * (numel * tp_degree) * seq_len * 8 / (tp_degree * dp_degree)
|
||||
# = batch_per_DP_group * numel * seq_len * 8
|
||||
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
model.train()
|
||||
tflops_list = []
|
||||
|
||||
def train_step():
|
||||
# we just use randomly generated data here
|
||||
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
|
||||
optimizer.zero_grad()
|
||||
|
||||
start = time()
|
||||
outputs = model(input_ids, attn_mask)[0]
|
||||
loss = criterion(outputs, input_ids)
|
||||
torch.cuda.synchronize()
|
||||
fwd_end = time()
|
||||
fwd_time = fwd_end - start
|
||||
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Forward '), ranks=[0])
|
||||
|
||||
if args.distplan.startswith("CAI"):
|
||||
optimizer.backward(loss)
|
||||
elif args.distplan.startswith("Pytorch"):
|
||||
loss.backward()
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
torch.cuda.synchronize()
|
||||
bwd_end = time()
|
||||
bwd_time = bwd_end - fwd_end
|
||||
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Backward '), ranks=[0])
|
||||
|
||||
optimizer.step()
|
||||
torch.cuda.synchronize()
|
||||
optim_time = time() - bwd_end
|
||||
step_time = time() - start
|
||||
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
|
||||
|
||||
step_tflops = get_tflops_func(step_time)
|
||||
logger.info(
|
||||
f"[{n + 1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
|
||||
ranks=[0],
|
||||
)
|
||||
if n >= WARMUP_STEPS:
|
||||
tflops_list.append(step_tflops)
|
||||
|
||||
demo_profiler = get_profile_context(PROF_FLAG,
|
||||
WARMUP_STEPS,
|
||||
NUM_STEPS - WARMUP_STEPS,
|
||||
save_dir=f"profile/{get_time_stamp()}-demo")
|
||||
|
||||
with demo_profiler as prof:
|
||||
start_time = time()
|
||||
for n in range(NUM_STEPS):
|
||||
train_step()
|
||||
prof.step()
|
||||
end_time = time()
|
||||
print('total time: {}'.format(end_time - start_time))
|
||||
|
||||
tflops_list.sort()
|
||||
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
|
||||
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
31
speed_test/colossal-ai/run.sh
Normal file
31
speed_test/colossal-ai/run.sh
Normal file
|
@ -0,0 +1,31 @@
|
|||
set -x
|
||||
# distplan in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"]
|
||||
export DISTPLAN=${DISTPLAN:-"CAI_Gemini"}
|
||||
|
||||
# The following options only valid when DISTPLAN="colossalai"
|
||||
export GPUNUM=${GPUNUM:-8}
|
||||
export TPDEGREE=${TPDEGREE:-1}
|
||||
export PLACEMENT=${PLACEMENT:-"auto"}
|
||||
export USE_SHARD_INIT=${USE_SHARD_INIT:-True}
|
||||
export BATCH_SIZE=${BATCH_SIZE:-40}
|
||||
export MODEL_TYPE=${MODEL_TYPE:-"Llama-7B"}
|
||||
export TRAIN_STEP=${TRAIN_STEP:-10}
|
||||
# export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
|
||||
if [ ${USE_SHARD_INIT} = "True" ]; then
|
||||
USE_SHARD_INIT="--shardinit"
|
||||
else
|
||||
USE_SHARD_INIT=""
|
||||
fi
|
||||
|
||||
mkdir -p gemini_logs
|
||||
|
||||
torchrun --nproc_per_node=${GPUNUM} --rdzv_endpoint=127.0.0.1:23335 run.py \
|
||||
--tp_degree=${TPDEGREE} \
|
||||
--model_type=${MODEL_TYPE} \
|
||||
--batch_size=${BATCH_SIZE} \
|
||||
--placement=${PLACEMENT} \
|
||||
${USE_SHARD_INIT} \
|
||||
--distplan=${DISTPLAN} \
|
||||
--train_step=${TRAIN_STEP} \
|
||||
2>&1 | tee ./gemini_logs/${MODEL_TYPE}_${DISTPLAN}_gpu_${GPUNUM}_bs_${BATCH_SIZE}_tp_${TPDEGREE}_${PLACEMENT}.log
|
41
speed_test/colossal-ai/utils.py
Normal file
41
speed_test/colossal-ai/utils.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
import time
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from torch.profiler import ProfilerActivity, profile, schedule, tensorboard_trace_handler
|
||||
|
||||
|
||||
class DummyProfiler:
|
||||
|
||||
def __init__(self):
|
||||
self.step_number = 0
|
||||
|
||||
def step(self):
|
||||
self.step_number += 1
|
||||
|
||||
|
||||
# Randomly Generated Data
|
||||
def get_data(batch_size, seq_len, vocab_size):
|
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
||||
|
||||
|
||||
def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir):
|
||||
if enable_flag:
|
||||
return profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
|
||||
schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps),
|
||||
on_trace_ready=tensorboard_trace_handler(save_dir),
|
||||
record_shapes=True,
|
||||
profile_memory=True)
|
||||
else:
|
||||
return nullcontext(DummyProfiler())
|
||||
|
||||
|
||||
def get_time_stamp():
|
||||
cur_time = time.strftime("%d-%H:%M", time.localtime())
|
||||
return cur_time
|
80
speed_test/lightning/run.py
Normal file
80
speed_test/lightning/run.py
Normal file
|
@ -0,0 +1,80 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-04-11 20:07:35
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-04-11 21:56:07
|
||||
FilePath: /Open-Llama/speed_test/lightning/run.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import time
|
||||
import torch
|
||||
import lightning.pytorch as pl
|
||||
from deepspeed.ops.adam import FusedAdam
|
||||
from transformers import LlamaForCausalLM, LlamaConfig
|
||||
from lightning.pytorch.strategies import DeepSpeedStrategy
|
||||
|
||||
|
||||
batch_size = 2
|
||||
seq_length = 2048
|
||||
vocab_size = 32000
|
||||
total_step = 100
|
||||
use_activation_ckpt = False
|
||||
|
||||
class FakeSet(torch.utils.data.Dataset):
|
||||
def __getitem__(self, idx):
|
||||
return torch.randint(0, vocab_size, (seq_length, ))
|
||||
|
||||
def __len__(self):
|
||||
return 1000000000
|
||||
|
||||
class SpeedTest(pl.LightningModule):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = LlamaForCausalLM(
|
||||
LlamaConfig(
|
||||
vocab_size=vocab_size,
|
||||
)
|
||||
)
|
||||
if use_activation_ckpt:
|
||||
self.model.gradient_checkpointing_enable()
|
||||
self.start_time = None
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
out = self.model(batch, labels=batch)
|
||||
loss = out.loss
|
||||
if self.start_time is None:
|
||||
print('start')
|
||||
self.start_time = time.time()
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = FusedAdam(self.trainer.model.parameters(), lr=1e-5)
|
||||
return optimizer
|
||||
|
||||
model = SpeedTest()
|
||||
train_loader = torch.utils.data.DataLoader(FakeSet(), batch_size=batch_size)
|
||||
|
||||
strategy=DeepSpeedStrategy(
|
||||
stage=2,
|
||||
offload_optimizer=False,
|
||||
offload_parameters=False,
|
||||
process_group_backend="nccl"
|
||||
)
|
||||
trainer = pl.Trainer(
|
||||
limit_train_batches=total_step,
|
||||
max_epochs=1,
|
||||
devices=8,
|
||||
accelerator="gpu",
|
||||
strategy=strategy,
|
||||
precision=16,
|
||||
enable_checkpointing=False)
|
||||
|
||||
def train(model, train_loader):
|
||||
start_time = time.time()
|
||||
trainer.fit(model=model, train_dataloaders=train_loader)
|
||||
end_time = time.time()
|
||||
return end_time - model.start_time
|
||||
|
||||
print('total time: {}'.format(train(model, train_loader)))
|
Loading…
Reference in New Issue
Block a user