commit
0ff8b2353f
|
@ -2,7 +2,7 @@
|
|||
* @Author: LiangSong(sl12160010@gmail.com)
|
||||
* @Date: 2023-03-10 21:18:35
|
||||
* @LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
* @LastEditTime: 2023-04-28 19:49:29
|
||||
* @LastEditTime: 2023-04-28 19:52:27
|
||||
* @FilePath: /Open-Llama/README.md
|
||||
* @Description:
|
||||
*
|
||||
|
@ -37,14 +37,15 @@ pip install git+https://github.com/s-JoL/transformers.git@dev
|
|||
![image4](assets/multiturn_chat.jpeg)
|
||||
|
||||
## **更新**
|
||||
[2023.4.28] Release v2.0
|
||||
|
||||
本次更新主要包含以下几个方面,相对于v1版本提升有效训练速度50%,其中pad从30%减少至5%,训练速度从3200token/s提升至3600token/s。0.95 * 3600/(0.7 * 3200)=1.527
|
||||
**[2023.4.28] Release v2.0**
|
||||
|
||||
本次更新主要包含以下几个方面,相对于v1版本提升有效训练速度**50%**,其中pad从**30%**减少至**5%**,训练速度从**3200token/s**提升至**3600token/s**。0.95 * 3600/(0.7 * 3200)=1.527
|
||||
1. 使用HuggingFace的datasets库进行数据读取,具体流程如下
|
||||
1. 使用transform函数将不同数据集的数据统一格式为{'text': 'xxx'}
|
||||
2. 使用Tokenizer进行分词
|
||||
3. 对长序列进行采样,目前提供三种模式,分别是:截断/采样(参考[Gopher论文](https://arxiv.org/abs/2112.11446))/切分
|
||||
4. 可选:对来自不同doc的文本进行拼接。减少了数据中的pad,加速训练;在v1版本中pad占比为30%,使用拼接后pad占比降低为5%。
|
||||
4. 可选:对来自不同doc的文本进行拼接。减少了数据中的pad,加速训练;在v1版本中pad占比为**30%**,使用拼接后pad占比降低为**5%**。
|
||||
2. 加入Trainer,对于预训练和指令微调都可以复用,见solver/trainer.py
|
||||
3. 统一预训练和指令微调训练入口为train_lm.py
|
||||
4. 提供更方便的配置,可见configs/pretrain_config.yaml
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
* @Author: LiangSong(sl12160010@gmail.com)
|
||||
* @Date: 2023-03-10 21:18:35
|
||||
* @LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
* @LastEditTime: 2023-04-28 19:49:24
|
||||
* @LastEditTime: 2023-04-28 19:53:01
|
||||
* @FilePath: /Open-Llama/README_en.md
|
||||
* @Description:
|
||||
*
|
||||
|
@ -38,15 +38,15 @@ Below is a display of the model's multi-turn dialogue ability regarding code:
|
|||
|
||||
## **Updates**
|
||||
|
||||
[2023.4.28] Release v2.0
|
||||
**[2023.4.28] Release v2.0**
|
||||
|
||||
This update mainly includes the following aspects, increasing the effective training speed by 50% compared to the v1 version, reducing padding from 30% to 5%, and improving training speed from 3200 tokens/s to 3600 tokens/s. 0.95 * 3600 / (0.7 * 3200) = 1.527
|
||||
This update mainly includes the following aspects, increasing the effective training speed by **50%** compared to the v1 version, reducing padding from **30%** to **5%**, and improving training speed from **3200 tokens/s** to **3600 tokens/s**. 0.95 * 3600 / (0.7 * 3200) = 1.527
|
||||
|
||||
1. Use HuggingFace's datasets library for data reading, with the process as follows:
|
||||
1. Use the transform function to unify data formats from different datasets to {'text': 'xxx'}
|
||||
2. Tokenize using Tokenizer
|
||||
3. Sample long sequences; currently, three modes are provided: truncation, sampling (refer to the [Gopher paper](https://arxiv.org/abs/2112.11446)), and splitting
|
||||
4. Optional: concatenate texts from different docs, reducing padding in the data and accelerating training. In the v1 version, padding accounted for 30%; after concatenation, padding is reduced to 5%.
|
||||
4. Optional: concatenate texts from different docs, reducing padding in the data and accelerating training. In the v1 version, padding accounted for **30%**; after concatenation, padding is reduced to **5%**.
|
||||
2. Add Trainer, which can be reused for both pre-training and instruction fine-tuning, see solver/trainer.py
|
||||
3. Unify the pre-training and instruction fine-tuning training entry to train_lm.py
|
||||
4. Provide more convenient configuration, see configs/pretrain_config.yaml
|
||||
|
|
Loading…
Reference in New Issue
Block a user