update readme
This commit is contained in:
parent
c8037746c3
commit
4c5e50e4aa
|
@ -2,7 +2,7 @@
|
|||
* @Author: LiangSong(sl12160010@gmail.com)
|
||||
* @Date: 2023-03-10 21:18:35
|
||||
* @LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
* @LastEditTime: 2023-04-28 22:44:21
|
||||
* @LastEditTime: 2023-04-29 11:41:10
|
||||
* @FilePath: /Open-Llama/README.md
|
||||
* @Description:
|
||||
*
|
||||
|
@ -24,7 +24,7 @@ Open-Llama是一个开源项目,提供了一整套用于构建大型语言模
|
|||
|
||||
经过Instruct-tuning的CheckPoint已开源在[HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1)。使用ckpt需要先用下面命令安装最新版本Transformers
|
||||
``` python
|
||||
pip install git+https://github.com/s-JoL/transformers.git@dev
|
||||
pip install git+https://github.com/huggingface/transformers.git
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
@ -181,7 +181,7 @@ python3 dataset/dataset.py
|
|||
我们基于Transformers库中的[Llama](https://github.com/facebookresearch/llama)参考论文原文中的2.4 Efficient implementation一节进行了修改,
|
||||
同时还参考了一些其他论文引入了一些优化。具体来说,我们引入了由META开源的[xformers库](https://github.com/facebookresearch/xformers)中的memory_efficient_attention操作来进行
|
||||
Self Attention的计算,这对于性能有明显的提升,提升大约30%。
|
||||
具体可以参见[modeling_llama.py](https://github.com/s-JoL/transformers/blob/dev/src/transformers/models/open_llama/modeling_open_llama.py#L230)
|
||||
具体可以参见[modeling_llama.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/open_llama/modeling_open_llama.py#L229)
|
||||
|
||||
同时我们还参考了[Bloom](https://huggingface.co/bigscience/bloom),对于Token Embedding引入了Stable Embedding以更好的稳定训练。
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
* @Author: LiangSong(sl12160010@gmail.com)
|
||||
* @Date: 2023-03-10 21:18:35
|
||||
* @LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
* @LastEditTime: 2023-04-28 22:44:27
|
||||
* @LastEditTime: 2023-04-29 11:41:20
|
||||
* @FilePath: /Open-Llama/README_en.md
|
||||
* @Description:
|
||||
*
|
||||
|
@ -24,7 +24,7 @@ Open-Llama is an open-source project that offers a complete training pipeline fo
|
|||
|
||||
The CheckPoint after Instruct-tuning is open-source on [HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). To use the CheckPoint, first, install the latest version of Transformers with the following command:
|
||||
``` python
|
||||
pip install git+https://github.com/s-JoL/transformers.git@dev
|
||||
pip install git+https://github.com/huggingface/transformers.git
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
@ -190,7 +190,7 @@ python3 dataset/dataset.py
|
|||
|
||||
### Model Structure
|
||||
|
||||
We modified according to the section 2.4 Efficient implementation of the [Llama](https://github.com/facebookresearch/llama) paper in the Transformers library, and also referenced other papers to introduce some optimizations. Specifically, we used the memory_efficient_attention operation from the [xformers library](https://github.com/facebookresearch/xformers) open-sourced by META for Self Attention computation, which has a significant performance improvement of approximately 30%. Further details can be found in [modeling_llama.py](https://github.com/s-JoL/transformers/blob/dev/src/transformers/models/open_llama/modeling_open_llama.py#L230).
|
||||
We modified according to the section 2.4 Efficient implementation of the [Llama](https://github.com/facebookresearch/llama) paper in the Transformers library, and also referenced other papers to introduce some optimizations. Specifically, we used the memory_efficient_attention operation from the [xformers library](https://github.com/facebookresearch/xformers) open-sourced by META for Self Attention computation, which has a significant performance improvement of approximately 30%. Further details can be found in [modeling_llama.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/open_llama/modeling_open_llama.py#L229).
|
||||
|
||||
Additionally, we referred to [Bloom](https://huggingface.co/bigscience/bloom) and introduced Stable Embedding for Token Embedding to better stabilize training.
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user