diff --git a/README.md b/README.md
index af6aae6..6b15e3d 100644
--- a/README.md
+++ b/README.md
@@ -2,27 +2,37 @@
* @Author: LiangSong(sl12160010@gmail.com)
* @Date: 2023-03-10 21:18:35
* @LastEditors: LiangSong(sl12160010@gmail.com)
- * @LastEditTime: 2023-04-29 11:41:10
+ * @LastEditTime: 2023-04-29 12:06:24
* @FilePath: /Open-Llama/README.md
* @Description:
*
* Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
-->
+[**中文**](./README.md) | [**English**](./README_en.md)
+
# Open-Llama
-[English README](https://github.com/Bayes-Song/Open-Llama/blob/main/README_en.md)
+
+
+
+
+
+
Open-Llama是一个开源项目,提供了一整套用于构建大型语言模型的训练流程,从数据集准备到分词、预训练、指令调优,以及强化学习技术 RLHF。
**可从[Demo](http://home.ustc.edu.cn/~sl9292/)直接试用本模型。**
-## **效果**
+## **主要内容**
-**采用FastChat项目相同方法测评Open-Llama的效果和GPT3.5的效果对比,经过测试在中文问题上可以达到GPT3.5 84%的水平。**
+- **支持Transformers/HuggingFace直接调用。** 经过Instruct-tuning的CheckPoint已开源在[HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1)。
-**训练速度达到3620 token/s,快于Llama原文中的3370 token/s,达到目前sota的水平。**
+- **采用FastChat项目相同方法测评Open-Llama的效果和GPT3.5的效果对比,经过测试在中文问题上可以达到GPT3.5 84%的水平。**
-经过Instruct-tuning的CheckPoint已开源在[HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1)。使用ckpt需要先用下面命令安装最新版本Transformers
+- **训练速度达到3620 token/s,快于Llama原文中的3370 token/s,达到目前sota的水平。**
+
+
+使用ckpt需要先用下面命令安装最新版本Transformers:
``` python
pip install git+https://github.com/huggingface/transformers.git
diff --git a/README_en.md b/README_en.md
index e0f6960..bf32b41 100644
--- a/README_en.md
+++ b/README_en.md
@@ -2,27 +2,36 @@
* @Author: LiangSong(sl12160010@gmail.com)
* @Date: 2023-03-10 21:18:35
* @LastEditors: LiangSong(sl12160010@gmail.com)
- * @LastEditTime: 2023-04-29 11:41:20
+ * @LastEditTime: 2023-04-29 12:06:05
* @FilePath: /Open-Llama/README_en.md
* @Description:
*
* Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
-->
+[**中文**](./README.md) | [**English**](./README_en.md)
+
# Open-Llama
-[English README](https://github.com/Bayes-Song/Open-Llama/blob/main/README_en.md)
+
+
+
+
+
+
Open-Llama is an open-source project that offers a complete training pipeline for building large language models, ranging from dataset preparation to tokenization, pre-training, prompt tuning, and the reinforcement learning technique RLHF.
**You can try this model directly from the [Demo](http://home.ustc.edu.cn/~sl9292/).**
-## **Performance**
+## **Main contents**
-**By adopting the same evaluation method as the FastChat project, Open-Llama's performance is compared to GPT3.5’s. After testing, it can reach 84% of GPT3.5's performance on Chinese questions.**
+- **Support Transformers/HuggingFace.** The CheckPoint after Instruct-tuning is open-source on [HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1).
-**The training speed reaches 3620 tokens/s, faster than the 3370 tokens/s reported in the original Llama paper, reaching the current state-of-the-art level.**
+- **By adopting the same evaluation method as the FastChat project, Open-Llama's performance is compared to GPT3.5’s. After testing, it can reach 84% of GPT3.5's performance on Chinese questions.**
-The CheckPoint after Instruct-tuning is open-source on [HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). To use the CheckPoint, first, install the latest version of Transformers with the following command:
+- **The training speed reaches 3620 tokens/s, faster than the 3370 tokens/s reported in the original Llama paper, reaching the current state-of-the-art level.**
+
+ To use the CheckPoint, first, install the latest version of Transformers with the following command:
``` python
pip install git+https://github.com/huggingface/transformers.git