add instruction-tuning
This commit is contained in:
parent
e1bd1766bc
commit
a62ac2658f
25
configs/instruction_tuning_config.py
Normal file
25
configs/instruction_tuning_config.py
Normal file
|
@ -0,0 +1,25 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-03-30 21:38:07
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-03-30 21:39:40
|
||||
FilePath: /Open-Llama/configs/instruction_tuning_config.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
max_length = 1024
|
||||
train_batch_size = 2
|
||||
num_training_steps = 37500
|
||||
num_warmup_steps = 100
|
||||
initializer_range = 1e-2
|
||||
lr = 2e-4
|
||||
weight_decay = 1e-1
|
||||
tokenizer_model_path = "configs/10w_vocab_wudao5_pile10.model"
|
||||
patterns = ["data/instruction_data/part-*.jsonl.zst"]
|
||||
# global step
|
||||
log_interval = 50
|
||||
eval_interval = 500
|
||||
save_interval = 1000
|
||||
work_dir = "data/saved_ckpt/"
|
||||
ckpt_path = "data/saved_ckpt/30000.pt"
|
61
data/preprocess_instruction.py
Normal file
61
data/preprocess_instruction.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-03-30 20:52:10
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-03-30 20:52:12
|
||||
FilePath: /Open-Llama/data/preprocess_instruction.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import json
|
||||
import zstandard as zstd
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("yizhongw/self_instruct")
|
||||
write_path = "data/instruction_data/part-self_instruct-{}.jsonl.zst"
|
||||
total_num = 0
|
||||
file_num = 0
|
||||
wfp = zstd.open(write_path.format(file_num), "wb", encoding="utf-8")
|
||||
for line in dataset["train"]:
|
||||
line = json.dumps(line)
|
||||
if total_num % 1024 == 0 and total_num > 0:
|
||||
file_num += 1
|
||||
wfp.close()
|
||||
wfp = zstd.open(write_path.format(file_num), "wb", encoding="utf-8")
|
||||
wfp.write(line.encode("utf-8"))
|
||||
wfp.write(b"\n")
|
||||
total_num += 1
|
||||
wfp.close()
|
||||
|
||||
dataset = load_dataset("BelleGroup/generated_train_0.5M_CN")
|
||||
write_path = "data/instruction_data/part-belle_0.5M-{}.jsonl.zst"
|
||||
total_num = 0
|
||||
file_num = 0
|
||||
wfp = zstd.open(write_path.format(file_num), "wb", encoding="utf-8")
|
||||
for line in dataset["train"]:
|
||||
line = json.dumps(line)
|
||||
if total_num % 1024 == 0 and total_num > 0:
|
||||
file_num += 1
|
||||
wfp.close()
|
||||
wfp = zstd.open(write_path.format(file_num), "wb", encoding="utf-8")
|
||||
wfp.write(line.encode("utf-8"))
|
||||
wfp.write(b"\n")
|
||||
total_num += 1
|
||||
wfp.close()
|
||||
|
||||
dataset = load_dataset("BelleGroup/generated_train_1M_CN")
|
||||
write_path = "data/instruction_data/part-belle_1M-{}.jsonl.zst"
|
||||
total_num = 0
|
||||
file_num = 0
|
||||
wfp = zstd.open(write_path.format(file_num), "wb", encoding="utf-8")
|
||||
for line in dataset["train"]:
|
||||
line = json.dumps(line)
|
||||
if total_num % 1024 == 0 and total_num > 0:
|
||||
file_num += 1
|
||||
wfp.close()
|
||||
wfp = zstd.open(write_path.format(file_num), "wb", encoding="utf-8")
|
||||
wfp.write(line.encode("utf-8"))
|
||||
wfp.write(b"\n")
|
||||
total_num += 1
|
||||
wfp.close()
|
192
dataset/data_loader.py
Normal file
192
dataset/data_loader.py
Normal file
|
@ -0,0 +1,192 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-03-30 20:58:16
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-03-30 21:00:49
|
||||
FilePath: /Open-Llama/dataset/data_loader.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import math
|
||||
import torch
|
||||
|
||||
|
||||
def pretrain_collate_fn_gen(tokenizer, segment_max_length=1024, padding="longest"):
|
||||
"""
|
||||
Organize data into tensors by padding based on the preset maximum length.
|
||||
"""
|
||||
pad_id = tokenizer.pad_id
|
||||
|
||||
def pretrain_collate_fn(batch):
|
||||
if padding == "longest":
|
||||
max_length = max([len(i) for i in batch])
|
||||
elif padding == "max_length":
|
||||
max_length = segment_max_length
|
||||
else:
|
||||
raise Exception("Invalid argumet for padding: {}".format(padding))
|
||||
input_ids = []
|
||||
for i in batch:
|
||||
input_len = len(i)
|
||||
input_ids.append(i + [pad_id] * (max_length - input_len))
|
||||
inputs = {
|
||||
"input_ids": torch.tensor(input_ids, dtype=torch.int64),
|
||||
}
|
||||
return inputs
|
||||
|
||||
return pretrain_collate_fn
|
||||
|
||||
|
||||
class BySequenceLengthDataset(torch.utils.data.IterableDataset):
|
||||
"""
|
||||
experimental
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, generator, batch_size, accelerator=None, bucket_size=16, max_length=1024
|
||||
):
|
||||
super().__init__()
|
||||
self.generator = generator
|
||||
self.batch_size = batch_size
|
||||
self.bucket_size = bucket_size
|
||||
self.bucket_num = math.ceil(max_length / bucket_size)
|
||||
self.buckets = [[] for _ in range(self.bucket_num)]
|
||||
self.bucket_idx = None
|
||||
self.accelerator = accelerator
|
||||
if self.accelerator is not None:
|
||||
self.buckets_ele_num = torch.tensor(
|
||||
[0] * self.bucket_num, dtype=torch.int64, device=accelerator.device
|
||||
)
|
||||
self.buckets_indexes = torch.arange(
|
||||
self.bucket_num, device=accelerator.device
|
||||
)
|
||||
self.finished = False
|
||||
self.has_no_same_bucket = False
|
||||
self.rest = None
|
||||
|
||||
def __iter__(self):
|
||||
if self.batch_size <= 1:
|
||||
return self.generator
|
||||
|
||||
def bucket_iter():
|
||||
while True:
|
||||
if self.bucket_idx is not None:
|
||||
sample = self.buckets[self.bucket_idx].pop()
|
||||
if len(self.buckets[self.bucket_idx]) == 0:
|
||||
self.bucket_idx = None
|
||||
yield sample
|
||||
try:
|
||||
sample = next(self.generator)
|
||||
except StopIteration:
|
||||
break
|
||||
sample_len = len(sample) - 1
|
||||
bucket_idx = sample_len // self.bucket_size
|
||||
if len(self.buckets[bucket_idx]) == self.batch_size - 1:
|
||||
self.bucket_idx = bucket_idx
|
||||
yield sample
|
||||
else:
|
||||
self.buckets[bucket_idx].append(sample)
|
||||
|
||||
def parallel_bucket_iter():
|
||||
while True:
|
||||
if self.bucket_idx is not None:
|
||||
sample = self.buckets[self.bucket_idx].pop()
|
||||
self.buckets_ele_num[self.bucket_idx] -= 1
|
||||
buckets_ele_num = self.accelerator.gather(self.buckets_ele_num)
|
||||
buckets_ele_num = buckets_ele_num.reshape(
|
||||
self.accelerator.num_processes, self.bucket_num
|
||||
)
|
||||
min_buckets_ele_num = buckets_ele_num.min(dim=0)[0]
|
||||
if min_buckets_ele_num[self.bucket_idx] <= 0:
|
||||
self.bucket_idx = None
|
||||
yield sample
|
||||
else:
|
||||
if self.finished:
|
||||
if self.has_no_same_bucket:
|
||||
if self.rest is None:
|
||||
self.rest = []
|
||||
for bucket in self.buckets:
|
||||
for i in bucket:
|
||||
self.rest.append(i)
|
||||
elif len(self.rest) > 0:
|
||||
yield self.rest.pop()
|
||||
else:
|
||||
raise StopIteration()
|
||||
else:
|
||||
buckets_ele_num = self.accelerator.gather(
|
||||
self.buckets_ele_num
|
||||
)
|
||||
buckets_ele_num = buckets_ele_num.view(
|
||||
self.accelerator.num_processes, self.bucket_num
|
||||
)
|
||||
min_buckets_ele_num = buckets_ele_num.min(dim=0)[0]
|
||||
valid_bucket_idx = self.buckets_indexes[
|
||||
min_buckets_ele_num >= self.batch_size
|
||||
]
|
||||
if len(valid_bucket_idx) > 0:
|
||||
self.bucket_idx = valid_bucket_idx[0].cpu().item()
|
||||
else:
|
||||
self.has_no_same_bucket = True
|
||||
else:
|
||||
try:
|
||||
sample = next(self.generator)
|
||||
except StopIteration:
|
||||
self.finished = True
|
||||
continue
|
||||
sample_len = len(sample) - 1
|
||||
bucket_idx = sample_len // self.bucket_size
|
||||
self.buckets[bucket_idx].append(sample)
|
||||
self.buckets_ele_num[bucket_idx] += 1
|
||||
buckets_ele_num = self.accelerator.gather(
|
||||
self.buckets_ele_num
|
||||
).cpu()
|
||||
buckets_ele_num = buckets_ele_num.view(
|
||||
self.accelerator.num_processes, self.bucket_num
|
||||
)
|
||||
min_buckets_ele_num = buckets_ele_num.min(dim=0)[0]
|
||||
valid_bucket_idx = self.buckets_indexes[
|
||||
min_buckets_ele_num >= self.batch_size
|
||||
]
|
||||
if len(valid_bucket_idx) > 0:
|
||||
self.bucket_idx = valid_bucket_idx[0].cpu().item()
|
||||
|
||||
if self.accelerator:
|
||||
return parallel_bucket_iter()
|
||||
else:
|
||||
return bucket_iter()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sentencepiece as spm
|
||||
from datasets import IterableDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from dataset.pretrain_dataset import preprocess_wudao_gen, preprocess_the_pile_gen
|
||||
|
||||
from dataset.tokenizer import Tokenizer
|
||||
from dataset.data_iter import create_shard_kwargs, create_data_iter
|
||||
|
||||
sp_model = spm.SentencePieceProcessor(
|
||||
model_file="configs/10w_vocab_wudao5_pile10.model"
|
||||
)
|
||||
tokenizer = Tokenizer(sp_model)
|
||||
patterns = ["data/pretrain_data/part-*.jsonl.zst"]
|
||||
paths = create_shard_kwargs(patterns)
|
||||
transform_dict = {
|
||||
"wudao": preprocess_wudao_gen(tokenizer),
|
||||
"pile": preprocess_the_pile_gen(tokenizer),
|
||||
}
|
||||
data_set = IterableDataset.from_generator(
|
||||
create_data_iter, gen_kwargs={"paths": paths, "transform_dict": transform_dict}
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
collate_fn=pretrain_collate_fn_gen(tokenizer),
|
||||
drop_last=True,
|
||||
)
|
||||
for batch in train_loader:
|
||||
for k, v in batch.items():
|
||||
print(k, v.shape)
|
||||
break
|
75
dataset/instruction_dataset.py
Normal file
75
dataset/instruction_dataset.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-03-30 21:02:00
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-03-30 21:02:06
|
||||
FilePath: /Open-Llama/dataset/instruction_dataset.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
|
||||
|
||||
def preprocess_self_instruction_gen(tokenizer, segment_max_length=1024):
|
||||
def preprocess_self_instruction(line):
|
||||
"""
|
||||
The format of the data is roughly as follows.
|
||||
{'prompt': 'Explain the origin of life on earth. Output:', 'completion': 'Life on Earth is believed to have'}
|
||||
Split the data based on the tokenized length according to the maximum length.
|
||||
"""
|
||||
prompt = line["prompt"]
|
||||
if prompt.endswith("Output:"):
|
||||
prompt = prompt[:-7]
|
||||
total = "user:{}<s>system:{}".format(prompt.strip(), line["completion"].strip())
|
||||
out = tokenizer(total)
|
||||
input_ids = out["input_ids"]
|
||||
return [input_ids]
|
||||
|
||||
return preprocess_self_instruction
|
||||
|
||||
|
||||
def preprocess_belle_gen(tokenizer, segment_max_length=1024):
|
||||
def preprocess_belle(line):
|
||||
"""
|
||||
The format of the data is roughly as follows.
|
||||
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
|
||||
Split the data based on the tokenized length according to the maximum length.
|
||||
"""
|
||||
prompt = line["input"].replace("\\n", "")
|
||||
prompt = prompt.strip("")
|
||||
|
||||
completion = line["target"].replace("\\n", "")
|
||||
completion = completion.strip("")
|
||||
total = "user:{}<s>system:{}".format(prompt, completion)
|
||||
out = tokenizer(total)
|
||||
input_ids = out["input_ids"]
|
||||
return [input_ids]
|
||||
|
||||
return preprocess_belle
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sentencepiece as spm
|
||||
from datasets import IterableDataset
|
||||
|
||||
from dataset.tokenizer import Tokenizer
|
||||
from dataset.data_iter import create_shard_kwargs, create_data_iter
|
||||
|
||||
sp_model = spm.SentencePieceProcessor(
|
||||
model_file="configs/10w_vocab_wudao5_pile10.model"
|
||||
)
|
||||
tokenizer = Tokenizer(sp_model)
|
||||
patterns = ["data/instruction_data/part-belle_1M*.jsonl.zst"]
|
||||
paths = create_shard_kwargs(patterns)
|
||||
transform_dict = {
|
||||
"belle_1M": preprocess_belle_gen(tokenizer),
|
||||
"belle_0.5M": preprocess_belle_gen(tokenizer),
|
||||
"self_instruct": preprocess_self_instruction_gen(tokenizer),
|
||||
}
|
||||
data_set = IterableDataset.from_generator(
|
||||
create_data_iter, gen_kwargs={"paths": paths, "transform_dict": transform_dict}
|
||||
)
|
||||
for i, sample in enumerate(data_set):
|
||||
print(sample, sp_model.Decode(sample))
|
||||
if i == 20:
|
||||
break
|
|
@ -9,7 +9,6 @@ Description:
|
|||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import math
|
||||
import torch
|
||||
|
||||
|
||||
def preprocess_wudao_gen(tokenizer, segment_max_length=1024):
|
||||
|
@ -48,59 +47,9 @@ def preprocess_the_pile_gen(tokenizer, segment_max_length=1024):
|
|||
return preprocess_the_pile
|
||||
|
||||
|
||||
def pretrain_collate_fn_gen(tokenizer, segment_max_length=1024):
|
||||
"""
|
||||
Organize data into tensors by padding based on the preset maximum length.
|
||||
"""
|
||||
pad_id = tokenizer.pad_id
|
||||
|
||||
def pretrain_collate_fn(batch):
|
||||
input_ids = []
|
||||
for i in batch:
|
||||
input_len = len(i)
|
||||
input_ids.append(i + [pad_id] * (segment_max_length - input_len))
|
||||
inputs = {
|
||||
"input_ids": torch.tensor(input_ids, dtype=torch.int64),
|
||||
}
|
||||
return inputs
|
||||
|
||||
return pretrain_collate_fn
|
||||
|
||||
|
||||
class BucketBySequenceLengthDataset(torch.utils.data.IterableDataset):
|
||||
def __init__(self, generator, batch_size, bucket_size=32, max_length=1024):
|
||||
super().__init__()
|
||||
self.generator = generator
|
||||
self.batch_size = batch_size
|
||||
self.bucket_size = bucket_size
|
||||
self.bucket_num = math.ceil(max_length / bucket_size)
|
||||
self.buckets = [[] for _ in range(self.bucket_num)]
|
||||
self.bucket_idx = None
|
||||
|
||||
def __iter__(self):
|
||||
if self.batch_size <= 1:
|
||||
return self.generator
|
||||
def bucket_iter():
|
||||
if self.bucket_idx is not None:
|
||||
sample = self.buckets[self.bucket_idx].pop()
|
||||
if len(self.buckets[self.bucket_idx]) == 0:
|
||||
self.bucket_idx = None
|
||||
yield sample
|
||||
sample = next(self.generator) - 1
|
||||
sample_len = len(sample)
|
||||
bucket_idx = sample_len // self.bucket_size
|
||||
if len(self.buckets[bucket_idx]) == self.batch_size - 1:
|
||||
self.bucket_idx = bucket_idx
|
||||
yield sample
|
||||
else:
|
||||
self.buckets[bucket_idx].append(sample)
|
||||
return bucket_iter()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sentencepiece as spm
|
||||
from datasets import IterableDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from dataset.tokenizer import Tokenizer
|
||||
from dataset.data_iter import create_shard_kwargs, create_data_iter
|
||||
|
@ -118,14 +67,6 @@ if __name__ == "__main__":
|
|||
data_set = IterableDataset.from_generator(
|
||||
create_data_iter, gen_kwargs={"paths": paths, "transform_dict": transform_dict}
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
collate_fn=pretrain_collate_fn_gen(tokenizer),
|
||||
drop_last=True,
|
||||
)
|
||||
for batch in train_loader:
|
||||
for k, v in batch.items():
|
||||
print(k, v.shape)
|
||||
for sample in data_set:
|
||||
print(sample)
|
||||
break
|
||||
|
|
180
inctruction_tuning.py
Normal file
180
inctruction_tuning.py
Normal file
|
@ -0,0 +1,180 @@
|
|||
"""
|
||||
Author: LiangSong(sl12160010@gmail.com)
|
||||
Date: 2023-03-30 21:35:01
|
||||
LastEditors: LiangSong(sl12160010@gmail.com)
|
||||
LastEditTime: 2023-03-30 21:40:03
|
||||
FilePath: /Open-Llama/inctruction_tuning.py
|
||||
Description:
|
||||
|
||||
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
import wandb
|
||||
import torch
|
||||
import random
|
||||
import sentencepiece as spm
|
||||
from torchinfo import summary
|
||||
from accelerate import Accelerator
|
||||
from datasets import IterableDataset
|
||||
from torch.utils.data import DataLoader
|
||||
from deepspeed.ops.adam import FusedAdam
|
||||
from transformers import LlamaForCausalLM, LlamaConfig, get_cosine_schedule_with_warmup
|
||||
|
||||
from dataset.validation import val_set
|
||||
from dataset.tokenizer import Tokenizer
|
||||
from dataset.data_iter import create_shard_kwargs, create_data_iter
|
||||
from dataset.data_loader import pretrain_collate_fn_gen
|
||||
from dataset.instruction_dataset import (
|
||||
preprocess_belle_gen,
|
||||
preprocess_self_instruction_gen,
|
||||
)
|
||||
from configs.instruction_tuning_config import *
|
||||
|
||||
accelerator = Accelerator()
|
||||
|
||||
if accelerator.is_main_process:
|
||||
wandb.init(project="LLAMA Instruction")
|
||||
|
||||
log_interval *= accelerator.gradient_accumulation_steps
|
||||
eval_interval *= accelerator.gradient_accumulation_steps
|
||||
save_interval *= accelerator.gradient_accumulation_steps
|
||||
|
||||
sp_model = spm.SentencePieceProcessor(model_file=tokenizer_model_path)
|
||||
tokenizer = Tokenizer(sp_model)
|
||||
|
||||
paths = create_shard_kwargs(patterns, repeat=3)
|
||||
random.shuffle(paths)
|
||||
transform_dict = {
|
||||
"belle_1M": preprocess_belle_gen(tokenizer, max_length),
|
||||
"belle_0.5M": preprocess_belle_gen(tokenizer, max_length),
|
||||
"self_instruct": preprocess_self_instruction_gen(tokenizer, max_length),
|
||||
}
|
||||
data_set = IterableDataset.from_generator(
|
||||
create_data_iter,
|
||||
gen_kwargs={
|
||||
"paths": paths,
|
||||
"transform_dict": transform_dict,
|
||||
"process_index": accelerator.process_index,
|
||||
"num_processes": accelerator.num_processes,
|
||||
},
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=train_batch_size,
|
||||
# If num_workers is greater than 1, duplicate data may occur.
|
||||
num_workers=0,
|
||||
collate_fn=pretrain_collate_fn_gen(tokenizer, max_length),
|
||||
drop_last=True,
|
||||
)
|
||||
# smaller initializer_range make training more stable
|
||||
# add stabel embedding to token embedding
|
||||
raw_model = LlamaForCausalLM(
|
||||
LlamaConfig(
|
||||
vocab_size=tokenizer.vocab_size,
|
||||
initializer_range=initializer_range,
|
||||
pad_token_id=tokenizer.pad_id,
|
||||
rms_norm_eps=1e-5,
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_dropout_prob=0.1,
|
||||
use_stable_embedding=True,
|
||||
shared_input_output_embedding=True,
|
||||
)
|
||||
)
|
||||
ckpt = torch.load(ckpt_path, map_location="cpu")
|
||||
raw_model.load_state_dict(ckpt)
|
||||
raw_model.eval()
|
||||
with torch.no_grad():
|
||||
summary(raw_model.cuda(), input_data=torch.ones(1, 64, dtype=torch.int64).cuda())
|
||||
no_decay = ["bias", "LayerNorm.weight", "layernorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [
|
||||
p
|
||||
for n, p in raw_model.named_parameters()
|
||||
if not any(nd in n for nd in no_decay)
|
||||
],
|
||||
"weight_decay": weight_decay,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p
|
||||
for n, p in raw_model.named_parameters()
|
||||
if any(nd in n for nd in no_decay)
|
||||
],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
optim = FusedAdam(optimizer_grouped_parameters, lr=lr, betas=(0.9, 0.95))
|
||||
optim.zero_grad()
|
||||
factor = accelerator.num_processes / accelerator.gradient_accumulation_steps
|
||||
scheduler = get_cosine_schedule_with_warmup(
|
||||
optim,
|
||||
num_warmup_steps=num_warmup_steps * factor,
|
||||
num_training_steps=num_training_steps * factor,
|
||||
)
|
||||
|
||||
_, model, optim, scheduler = accelerator.prepare(
|
||||
train_loader, raw_model, optim, scheduler
|
||||
)
|
||||
print("start training...")
|
||||
train_loader_iter = iter(train_loader)
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
for data_step in range(num_training_steps):
|
||||
model.train()
|
||||
with accelerator.accumulate(model):
|
||||
batch = next(train_loader_iter)
|
||||
for k, v in batch.items():
|
||||
batch[k] = v.to(accelerator.device, non_blocking=True)
|
||||
out = model(**batch, labels=batch["input_ids"])
|
||||
total_loss = out.loss
|
||||
losses = {"total_loss": total_loss}
|
||||
accelerator.backward(total_loss)
|
||||
optim.step()
|
||||
scheduler.step()
|
||||
optim.zero_grad()
|
||||
if accelerator.sync_gradients:
|
||||
global_step += 1
|
||||
if data_step % log_interval == 0 and data_step > 0 and accelerator.is_main_process:
|
||||
cost_time = time.time() - start_time
|
||||
start_time = time.time()
|
||||
tokens = train_batch_size * log_interval * max_length
|
||||
wandb.log({"Training/Token per second per gpu": tokens / cost_time})
|
||||
for k, v in losses.items():
|
||||
wandb.log({"Losses/{}".format(k): v})
|
||||
current_lr = optim.param_groups[0]["lr"]
|
||||
wandb.log({"Training/LR": current_lr})
|
||||
if optim.scaler is not None:
|
||||
wandb.log({"Training/Loss Scale": optim.scaler.get_scale()})
|
||||
wandb.log({"Training/Data Step": data_step})
|
||||
wandb.log({"Training/Global Step": global_step})
|
||||
accelerator.print(
|
||||
"Global Step: {}, Data Step: {}, Loss: {}, Token per second per gpu: {}".format(
|
||||
global_step, data_step, losses["total_loss"], tokens / cost_time
|
||||
)
|
||||
)
|
||||
if data_step % eval_interval == 0 and accelerator.is_main_process:
|
||||
text_table = wandb.Table(columns=["question", "pred"])
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for data in val_set:
|
||||
raw_inputs = data
|
||||
inputs_len = len(raw_inputs)
|
||||
inputs = tokenizer(
|
||||
raw_inputs, return_tensors=True, add_special_tokens=False
|
||||
)
|
||||
for k, v in inputs.items():
|
||||
inputs[k] = v.to(accelerator.device)
|
||||
pred = model.generate(
|
||||
**inputs, max_new_tokens=256, do_sample=True, repetition_penalty=2.0
|
||||
)
|
||||
pred = tokenizer.decode(pred.cpu())[0]
|
||||
pred = pred[inputs_len:]
|
||||
text_table.add_data(raw_inputs, pred)
|
||||
wandb.log({"Predictions on {}".format(global_step): text_table})
|
||||
if data_step % save_interval == 0 and data_step > 0 and accelerator.is_main_process:
|
||||
if not os.path.isdir(work_dir):
|
||||
os.mkdir(work_dir)
|
||||
torch.save(raw_model.state_dict(), "{}/{}.pt".format(work_dir, global_step))
|
||||
wandb.finish()
|
|
@ -24,12 +24,12 @@ from transformers import LlamaForCausalLM, LlamaConfig, get_cosine_schedule_with
|
|||
from dataset.validation import val_set
|
||||
from dataset.tokenizer import Tokenizer
|
||||
from dataset.data_iter import create_shard_kwargs, create_data_iter
|
||||
from dataset.data_loader import pretrain_collate_fn_gen
|
||||
from dataset.pretrain_dataset import (
|
||||
preprocess_the_pile_gen,
|
||||
preprocess_wudao_gen,
|
||||
pretrain_collate_fn_gen,
|
||||
)
|
||||
from configs.train_config import *
|
||||
from configs.pretrain_config import *
|
||||
|
||||
accelerator = Accelerator()
|
||||
|
||||
|
@ -62,7 +62,7 @@ train_loader = DataLoader(
|
|||
data_set,
|
||||
batch_size=train_batch_size,
|
||||
# If num_workers is greater than 1, duplicate data may occur.
|
||||
num_workers=1,
|
||||
num_workers=0,
|
||||
collate_fn=pretrain_collate_fn_gen(tokenizer, max_length),
|
||||
drop_last=True,
|
||||
)
|
||||
|
@ -124,7 +124,7 @@ for data_step in range(num_training_steps):
|
|||
batch = next(train_loader_iter)
|
||||
for k, v in batch.items():
|
||||
batch[k] = v.to(accelerator.device, non_blocking=True)
|
||||
out = model(**batch, labels=batch['input_ids'])
|
||||
out = model(**batch, labels=batch["input_ids"])
|
||||
total_loss = out.loss
|
||||
losses = {"total_loss": total_loss}
|
||||
accelerator.backward(total_loss)
|
||||
|
|
Loading…
Reference in New Issue
Block a user