add more instruction data

This commit is contained in:
LiangSong 2023-04-06 03:45:24 +08:00
parent 9f140dc99f
commit bc16df4751
4 changed files with 125 additions and 19 deletions

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-30 21:38:07
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-03-30 21:39:40
LastEditTime: 2023-04-06 03:37:23
FilePath: /Open-Llama/configs/instruction_tuning_config.py
Description:
@ -10,7 +10,7 @@ Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
"""
max_length = 1024
train_batch_size = 2
num_training_steps = 37500
num_training_steps = 40000
num_warmup_steps = 100
initializer_range = 1e-2
lr = 2e-4
@ -22,4 +22,4 @@ log_interval = 50
eval_interval = 500
save_interval = 1000
work_dir = "data/saved_ckpt/"
ckpt_path = "data/saved_ckpt/40000.pt"
ckpt_path = "data/saved_ckpt/83200.pt"

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-17 19:32:20
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-05 22:36:45
LastEditTime: 2023-04-06 03:37:55
FilePath: /Open-Llama/dataset/data_iter.py
Description:
@ -68,7 +68,10 @@ class DataIter(IterableDataset):
# Transformation, including sample, tokenize, etc.
if self.transform_dict:
line = self.transform_dict[dataset_name](line)
if isinstance(line, str):
# skip bad doc
if line is None:
continue
elif isinstance(line, str):
yield line
# must be list of list
elif isinstance(line, list) and isinstance(line[0], list):

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-30 21:02:00
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-05 22:35:24
LastEditTime: 2023-04-06 03:33:27
FilePath: /Open-Llama/dataset/instruction_dataset.py
Description:
@ -21,7 +21,7 @@ def preprocess_self_instruction_gen(tokenizer, segment_max_length=1024):
prompt = line["prompt"]
if prompt.endswith("Output:"):
prompt = prompt[:-7]
total = "user:{}<s>system:{}".format(prompt.strip(), line["completion"].strip())
total = "user:{}\nsystem:{}".format(prompt.strip(), line["completion"].strip())
out = tokenizer(total)
input_ids = out["input_ids"]
return [
@ -39,12 +39,12 @@ def preprocess_belle_gen(tokenizer, segment_max_length=1024):
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
Split the data based on the tokenized length according to the maximum length.
"""
prompt = line["input"].replace("\\n", "")
prompt = line["instruction"].replace("\\n", "")
prompt = prompt.strip("")
completion = line["target"].replace("\\n", "")
completion = line["output"].replace("\\n", "")
completion = completion.strip("")
total = "user:{}<s>system:{}".format(prompt, completion)
total = "user:{}\nsystem:{}".format(prompt, completion)
out = tokenizer(total)
input_ids = out["input_ids"]
return [
@ -55,9 +55,101 @@ def preprocess_belle_gen(tokenizer, segment_max_length=1024):
return preprocess_belle
def preprocess_belle_multiturn_chat_gen(tokenizer, segment_max_length=1024):
def preprocess_belle_multiturn_chat(line):
"""
The format of the data is roughly as follows.
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
Split the data based on the tokenized length according to the maximum length.
"""
prompt = line["instruction"].replace("\\n", "")
prompt = prompt.strip("")
completion = line["output"].replace("\\n", "")
completion = completion.strip("")
chats = prompt + completion
chats = chats.split("Human:")
input_ids = []
for chat in chats:
if chat.strip() == "":
continue
res = chat.split("Assistant:")
if len(res) != 2:
continue
prompt, completion = res
prompt = prompt.strip()
completion = completion.strip()
chat = "user:{}\nsystem:{}".format(prompt, completion)
out = tokenizer(chat)
input_ids.extend(out["input_ids"])
if len(input_ids) == 0:
return None
return [
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
for i in range(math.ceil(len(input_ids) / segment_max_length))
]
return preprocess_belle_multiturn_chat
def preprocess_sharegpt_gen(tokenizer, segment_max_length=1024):
def preprocess_sharegpt(line):
"""
The format of the data is roughly as follows.
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
Split the data based on the tokenized length according to the maximum length.
"""
chats = line["conversations"]
if chats[0]["from"] != "human":
chats = chats[1:]
input_ids = []
for i in range(len(chats) // 2):
prompt = chats[2 * i]
completion = chats[2 * i + 1]
if not (prompt["from"] == "human" and completion["from"] == "gpt"):
continue
prompt = prompt["value"]
prompt = prompt.strip()
completion = completion["value"]
completion = completion.strip()
chat = "user:{}\nsystem:{}".format(prompt, completion)
out = tokenizer(chat)
input_ids.extend(out["input_ids"])
if input_ids == []:
return None
return [
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
for i in range(math.ceil(len(input_ids) / segment_max_length))
]
return preprocess_sharegpt
def preprocess_instruct_code_gen(tokenizer, segment_max_length=1024):
def preprocess_instruct_code(line):
"""
The format of the data is roughly as follows.
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
Split the data based on the tokenized length according to the maximum length.
"""
prompt = line["instruction"].replace("\\n", "")
prompt = prompt.strip("")
completion = line["answer"].replace("\\n", "")
completion = completion.strip("")
total = "user:{}\nsystem:{}".format(prompt, completion)
out = tokenizer(total)
input_ids = out["input_ids"]
return [
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
for i in range(math.ceil(len(input_ids) / segment_max_length))
]
return preprocess_instruct_code
if __name__ == "__main__":
import sentencepiece as spm
from datasets import IterableDataset
from dataset.tokenizer import Tokenizer
from dataset.data_iter import create_shard_kwargs, DataIter
@ -66,17 +158,21 @@ if __name__ == "__main__":
model_file="configs/10w_vocab_wudao5_pile10.model"
)
tokenizer = Tokenizer(sp_model)
patterns = ["data/instruction_data/part-belle_1M*.jsonl.zst"]
patterns = ["data/instruction_data/part-belle_multiturn_chat_0.8M-*.jsonl.zst"]
paths = create_shard_kwargs(patterns)
transform_dict = {
"self_instruct": preprocess_self_instruction_gen(tokenizer),
"belle_1M": preprocess_belle_gen(tokenizer),
"belle_0.5M": preprocess_belle_gen(tokenizer),
"self_instruct": preprocess_self_instruction_gen(tokenizer),
"belle_school_math_0.25M": preprocess_belle_gen(tokenizer),
"belle_multiturn_chat_0.8M": preprocess_belle_multiturn_chat_gen(tokenizer),
"instruct_to_code": preprocess_instruct_code_gen(tokenizer),
"sharegpt_90K": preprocess_sharegpt_gen(tokenizer),
}
data_set = DataIter(
paths, transform_dict=transform_dict, concat_docs=True, max_length=1024
)
for i, sample in enumerate(data_set):
print(sample, sp_model.Decode(sample))
if i == 20:
print(sp_model.decode(sample))
if i == 1:
break

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-30 21:35:01
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-05 22:47:25
LastEditTime: 2023-04-06 03:35:31
FilePath: /Open-Llama/inctruction_tuning.py
Description:
@ -27,6 +27,9 @@ from dataset.collate_fn import collate_fn_gen
from dataset.instruction_dataset import (
preprocess_belle_gen,
preprocess_self_instruction_gen,
preprocess_belle_multiturn_chat_gen,
preprocess_instruct_code_gen,
preprocess_sharegpt_gen,
)
from configs.instruction_tuning_config import *
@ -45,9 +48,13 @@ tokenizer = Tokenizer(sp_model)
paths = create_shard_kwargs(patterns, repeat=3)
random.shuffle(paths)
transform_dict = {
"belle_1M": preprocess_belle_gen(tokenizer, max_length),
"belle_0.5M": preprocess_belle_gen(tokenizer, max_length),
"self_instruct": preprocess_self_instruction_gen(tokenizer, max_length),
"self_instruct": preprocess_self_instruction_gen(tokenizer),
"belle_1M": preprocess_belle_gen(tokenizer),
"belle_0.5M": preprocess_belle_gen(tokenizer),
"belle_school_math_0.25M": preprocess_belle_gen(tokenizer),
"belle_multiturn_chat_0.8M": preprocess_belle_multiturn_chat_gen(tokenizer),
"instruct_to_code": preprocess_instruct_code_gen(tokenizer),
"sharegpt_90K": preprocess_sharegpt_gen(tokenizer),
}
data_set = DataIter(
paths,