support multiple epochs

This commit is contained in:
LiangSong 2023-05-03 00:02:01 +08:00
parent f05e929aad
commit c2184c6dd1

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-04-24 20:05:21
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-29 21:59:51
LastEditTime: 2023-05-02 23:55:37
FilePath: /Open-Llama/solver/trainer.py
Description:
@ -109,9 +109,12 @@ class Trainer:
logging.warn("No ckpt found in {}".format(self.work_dir))
if self.global_step > 0:
skip_steps = self.global_step * self.gradient_accumulation_steps
self.train_loader = self.accelerator.skip_first_batches(
logging.warn("Skiped {} steps.".format(skip_steps))
self.train_loader_skiped = self.accelerator.skip_first_batches(
self.train_loader, num_batches=skip_steps
)
else:
self.train_loader_skiped = self.train_loader
self.accelerator.wait_for_everyone()
def train_step(self, batch):
@ -129,35 +132,45 @@ class Trainer:
self.get_lr_scheduler()
self.prepare()
self.start_time = time.time()
for self.data_step, batch in enumerate(self.train_loader):
# end training
self.epoch = 0
self.data_step = 0
while True:
if self.data_step >= self.config["train"]["num_training_steps"]:
break
# data to device
for k, v in batch.items():
batch[k] = v.to(self.accelerator.device, non_blocking=True)
self.model.train()
# train step
with self.accelerator.accumulate(self.model):
losses = self.train_step(batch)
if self.accelerator.sync_gradients:
self.global_step += 1
# log
if (
self.data_step % self.log_interval == 0
and self.data_step > 0
and self.accelerator.is_main_process
):
self.log(losses)
# eval/vis model output
if (
self.data_step % self.eval_interval == 0
and self.accelerator.is_main_process
):
self.eval()
# save state
if self.data_step % self.save_interval == 0 and self.data_step > 0:
self.accelerator.save_state(self.work_dir)
if self.epoch == 0:
train_loader = self.train_loader_skiped
else:
train_loader = self.train_loader
for batch in train_loader:
# end training
if self.data_step >= self.config["train"]["num_training_steps"]:
break
# data to device
for k, v in batch.items():
batch[k] = v.to(self.accelerator.device, non_blocking=True)
self.model.train()
# train step
with self.accelerator.accumulate(self.model):
losses = self.train_step(batch)
if self.accelerator.sync_gradients:
self.global_step += 1
# log
if (
self.data_step % self.log_interval == 0
and self.data_step > 0
and self.accelerator.is_main_process
):
self.log(losses)
# eval/vis model output
if (
self.data_step % self.eval_interval == 0
and self.accelerator.is_main_process
):
self.eval()
# save state
if self.data_step % self.save_interval == 0 and self.data_step > 0:
self.accelerator.save_state(self.work_dir)
self.data_step += 1
wandb.finish()
def log(self, losses):