""" Author: LiangSong(sl12160010@gmail.com) Date: 2023-03-31 13:26:15 LastEditors: LiangSong(sl12160010@gmail.com) LastEditTime: 2023-04-06 03:45:44 FilePath: /Open-Llama/server.py Description: Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved. """ import torch import gradio as gr import sentencepiece as spm from dataset.tokenizer import Tokenizer from transformers import LlamaForCausalLM, LlamaConfig sp_model = spm.SentencePieceProcessor( model_file="configs/10w_vocab_wudao5_pile10.model" ) tokenizer = Tokenizer(sp_model) raw_model = LlamaForCausalLM( LlamaConfig( vocab_size=tokenizer.vocab_size, initializer_range=0.01, pad_token_id=tokenizer.pad_id, rms_norm_eps=1e-5, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, use_stable_embedding=True, shared_input_output_embedding=True, ) ) ckpt = torch.load( "data/saved_ckpt/instruction_tuning_3_epochs/37001.pt", map_location="cpu" ) raw_model.load_state_dict(ckpt) raw_model.eval() model = raw_model.cuda() print("ready") def question_answer(prompt): print(prompt) raw_inputs = "user:{}\nsystem:".format(prompt) inputs_len = len(raw_inputs) inputs = tokenizer(raw_inputs, return_tensors=True, add_special_tokens=False) for k, v in inputs.items(): inputs[k] = v.cuda() pred = model.generate(**inputs, max_new_tokens=512, do_sample=True) pred = tokenizer.decode(pred.cpu())[0] pred = pred[inputs_len:] print(pred) return pred demo = gr.Interface( fn=question_answer, inputs="text", outputs="text", examples=[ "帮我写一封邮件,内容是咨询教授本学期量子力学课程的时间表?并且希望教授推荐一些相关书籍", "情人节送女朋友什么礼物,预算500", "我今天肚子有点不舒服,晚饭有什么建议么", "可以总结一下小说三体的核心内容么?", "Can you explain to me what quantum mechanics is and how it relates to quantum computing?", "请帮我写一个AI驱动的幼儿教育APP的商业计划书", "用python实现一个快速排序", ], title="Open-Llama", description="不基于其他预训练模型,完全使用[Open-Llama](https://github.com/Bayes-Song/Open-Llama)项目从0开始训练的Instruct-GPT模型,总训练成本不超过2w美元。由于请求需要经Gradio进行转发,可能出现请求丢失的现象,当长时间无响应(如20s以上)可刷新重试。当前体验服务生成的所有内容都是由人工智能模型生成,我们对其生成内容的准确性、完整性和功能性不做任何保证,并且其生成的内容不代表我们的态度或观点。", article="联系方式: sl12160010@gmail.com 对于该项目有任何意见和建议都欢迎联系我", ).queue(concurrency_count=1) demo.launch(share=True)