Open-Llama/utils/speed_test/colossal-ai/run.py
2023-04-12 22:16:15 +08:00

409 lines
13 KiB
Python

"""
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-04-11 20:07:35
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-11 21:56:23
FilePath: /Open-Llama/speed_test/colossal-ai/run.py
Description:
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
"""
import os
from functools import partial
from time import time
import psutil
import torch
import torch.nn as nn
from transformers import LlamaForCausalLM, LlamaConfig
from utils import get_data, get_profile_context, get_tflops, get_time_stamp
from packaging import version
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor import (
ColoParameter,
ComputePattern,
ComputeSpec,
ProcessGroup,
ReplicaSpec,
ShardSpec,
)
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext, zero_model_wrapper, zero_optim_wrapper
CAI_VERSION = colossalai.__version__
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--distplan",
type=str,
default="CAI_Gemini",
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
)
parser.add_argument(
"--tp_degree",
type=int,
default=1,
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--placement",
type=str,
default="cpu",
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--shardinit",
action="store_true",
help="Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="batch size per DP group of training.",
)
parser.add_argument(
"--model_type",
type=str,
default="Llama-7B",
help="model model scale",
)
parser.add_argument(
"--train_step",
type=int,
default=10,
help="training iterations for test",
)
args = parser.parse_args()
return args
def model_builder(VOCAB_SIZE, checkpoint=False):
raw_model = LlamaForCausalLM(
LlamaConfig(
vocab_size=VOCAB_SIZE,
)
)
if checkpoint:
raw_model.gradient_checkpointing_enable()
return raw_model
# Parameter Sharding Strategies for Tensor Parallelism
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
param.set_tensor_spec(*spec)
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(0, param, pg)
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(-1, param, pg)
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=""):
return f"{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB"
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):
total_numel += p.numel()
return total_numel
def model_size_formatter(numel: int) -> str:
GB_SIZE = 10**9
MB_SIZE = 10**6
KB_SIZE = 10**3
if numel >= GB_SIZE:
return f"{numel / GB_SIZE:.1f}B"
elif numel >= MB_SIZE:
return f"{numel / MB_SIZE:.1f}M"
elif numel >= KB_SIZE:
return f"{numel / KB_SIZE:.1f}K"
else:
return str(numel)
def set_cpu_maximum_parallelism():
conf_str = torch.__config__.parallel_info()
inter_str = conf_str.split("hardware_concurrency() : ")[1]
max_concurrency = inter_str.split("\n")[0]
os.environ["OMP_NUM_THREADS"] = max_concurrency
print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.")
# Tensor Parallel
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
"""tensor_parallelize
Sharding the Model Parameters.
Args:
model (torch.nn.Module): a torch module to be sharded
"""
for mn, module in model.named_modules():
for pn, param in module.named_parameters(recurse=False):
# NOTE() a param maybe shared by two modules
if hasattr(param, "visited"):
continue
# if shard init, then convert param to replica and use the dp-only ProcessGroup
param: ColoParameter = param
param.set_dist_spec(ReplicaSpec())
param.set_process_group(pg)
# shard it w.r.t tp pattern
if "mlp.c_fc" in mn:
if "weight" in pn or "bias" in pn:
split_param_col_tp1d(param, pg) # colmn slice
# keep the shape of the output from c_fc
param.compute_spec.set_output_replicate(False)
else:
param.set_dist_spec(ReplicaSpec())
elif "mlp.c_proj" in mn:
if "weight" in pn:
split_param_row_tp1d(param, pg) # row slice
else:
param.set_dist_spec(ReplicaSpec())
elif "wte" in mn or "wpe" in mn:
split_param_col_tp1d(param, pg) # colmn slice
elif "c_attn" in mn or "c_proj" in mn:
split_param_col_tp1d(param, pg) # colmn slice
else:
param.set_dist_spec(ReplicaSpec())
param.visited = True
def main():
# version check
# this example is supposed to work for versions greater than 0.2.0
assert version.parse(CAI_VERSION) >= version.parse("0.2.0")
set_cpu_maximum_parallelism()
args = parse_args()
# if args.distplan not in ["colossalai", "torch_ddp", "torch_zero", "zero1", "zero2"]:
if args.distplan not in [
"CAI_ZeRO1",
"CAI_ZeRO2",
"CAI_Gemini",
"Pytorch_DDP",
"Pytorch_ZeRO",
]:
raise TypeError(f"{args.distplan} is error")
# batch size per DP degree
BATCH_SIZE = args.batch_size
SEQ_LEN = 2048
VOCAB_SIZE = 32000
NUM_STEPS = args.train_step
WARMUP_STEPS = 1
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
assert (
NUM_STEPS - WARMUP_STEPS
) % 2 == 1, "the number of valid steps should be odd to take the median"
PROF_FLAG = False # The flag of profiling, False by default
disable_existing_loggers()
colossalai.launch_from_torch(config={})
logger = get_dist_logger()
logger.info(
f"{args.model_type}, {args.distplan}, batch size {BATCH_SIZE}", ranks=[0]
)
# build criterion
criterion = GPTLMLoss()
torch.manual_seed(123)
if args.distplan.startswith("CAI"):
# all param must use the same process group.
world_size = torch.distributed.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None
default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None
if args.shardinit and args.distplan != "CAI_Gemini":
raise RuntimeError("You can only use shardinit with CAI_Gemini")
# build GPT model
with ColoInitContext(
device=get_current_device(),
dtype=torch.half,
default_dist_spec=default_dist_spec,
default_pg=shard_pg,
):
model = model_builder(VOCAB_SIZE, checkpoint=True)
tp_pg = ProcessGroup(tp_degree=args.tp_degree)
# Tensor Parallelism (TP)
# You should notice that v0.1.10 is not compatible with TP degree > 1
if args.tp_degree > 1:
tensor_parallelize(model, tp_pg)
# asign running configurations
gemini_config = None
if args.distplan.startswith("CAI_ZeRO"):
optim_config = dict(
reduce_bucket_size=12 * 1024 * 1024,
overlap_communication=True,
verbose=True,
)
elif args.distplan == "CAI_Gemini":
gemini_config = dict(
strict_ddp_mode=args.tp_degree == 1,
device=get_current_device(),
placement_policy=args.placement,
pin_memory=True,
hidden_dim=model.model.config.hidden_size,
search_range_mb=128,
)
optim_config = dict(gpu_margin_mem_ratio=0.0)
else:
raise RuntimeError
# build a highly optimized gpu/cpu optimizer
optimizer = HybridAdam(model.parameters(), lr=1e-3)
if args.distplan == "CAI_ZeRO1":
zero_stage = 1
elif args.distplan == "CAI_ZeRO2":
zero_stage = 2
elif args.distplan == "CAI_Gemini":
zero_stage = 3
else:
raise RuntimeError
# wrap your model and optimizer
model = zero_model_wrapper(model, zero_stage, gemini_config)
optimizer = zero_optim_wrapper(model, optimizer, optim_config=optim_config)
logger.info(get_mem_info(prefix="After init optim, "), ranks=[0])
elif args.distplan.startswith("Pytorch"):
assert args.tp_degree == 1, "The degree of TP should be 1 for DDP examples."
model = model_builder(VOCAB_SIZE, checkpoint=True).cuda()
model = DDP(model)
if args.distplan.endswith("DDP"):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
elif args.distplan.endswith("ZeRO"):
from torch.distributed.optim import ZeroRedundancyOptimizer
optimizer = ZeroRedundancyOptimizer(
model.parameters(), optimizer_class=torch.optim.Adam, lr=1e-3
)
else:
raise RuntimeError
# model is shared after TP
numel = get_model_size(model)
logger.info(f"the size of testing model size is {model_size_formatter(numel)}.")
logger.info(get_mem_info(prefix="After init model, "), ranks=[0])
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
# = (batch_per_DP_group * dp_degree) * (numel * tp_degree) * seq_len * 8 / (tp_degree * dp_degree)
# = batch_per_DP_group * numel * seq_len * 8
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
torch.cuda.synchronize()
model.train()
tflops_list = []
def train_step():
# we just use randomly generated data here
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
optimizer.zero_grad()
start = time()
outputs = model(input_ids, attn_mask)[0]
loss = criterion(outputs, input_ids)
torch.cuda.synchronize()
fwd_end = time()
fwd_time = fwd_end - start
logger.info(get_mem_info(prefix=f"[{n + 1}/{NUM_STEPS}] Forward "), ranks=[0])
if args.distplan.startswith("CAI"):
optimizer.backward(loss)
elif args.distplan.startswith("Pytorch"):
loss.backward()
else:
raise RuntimeError
torch.cuda.synchronize()
bwd_end = time()
bwd_time = bwd_end - fwd_end
logger.info(get_mem_info(prefix=f"[{n + 1}/{NUM_STEPS}] Backward "), ranks=[0])
optimizer.step()
torch.cuda.synchronize()
optim_time = time() - bwd_end
step_time = time() - start
logger.info(
get_mem_info(prefix=f"[{n + 1}/{NUM_STEPS}] Optimizer step "), ranks=[0]
)
step_tflops = get_tflops_func(step_time)
logger.info(
f"[{n + 1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
ranks=[0],
)
if n >= WARMUP_STEPS:
tflops_list.append(step_tflops)
demo_profiler = get_profile_context(
PROF_FLAG,
WARMUP_STEPS,
NUM_STEPS - WARMUP_STEPS,
save_dir=f"profile/{get_time_stamp()}-demo",
)
with demo_profiler as prof:
start_time = time()
for n in range(NUM_STEPS):
train_step()
prof.step()
end_time = time()
print("total time: {}".format(end_time - start_time))
tflops_list.sort()
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
torch.cuda.synchronize()
if __name__ == "__main__":
main()