Open-Llama/dataset/data_loader.py
2023-03-30 23:43:12 +08:00

193 lines
7.3 KiB
Python

"""
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-30 20:58:16
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-03-30 21:00:49
FilePath: /Open-Llama/dataset/data_loader.py
Description:
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
"""
import math
import torch
def pretrain_collate_fn_gen(tokenizer, segment_max_length=1024, padding="longest"):
"""
Organize data into tensors by padding based on the preset maximum length.
"""
pad_id = tokenizer.pad_id
def pretrain_collate_fn(batch):
if padding == "longest":
max_length = max([len(i) for i in batch])
elif padding == "max_length":
max_length = segment_max_length
else:
raise Exception("Invalid argumet for padding: {}".format(padding))
input_ids = []
for i in batch:
input_len = len(i)
input_ids.append(i + [pad_id] * (max_length - input_len))
inputs = {
"input_ids": torch.tensor(input_ids, dtype=torch.int64),
}
return inputs
return pretrain_collate_fn
class BySequenceLengthDataset(torch.utils.data.IterableDataset):
"""
experimental
"""
def __init__(
self, generator, batch_size, accelerator=None, bucket_size=16, max_length=1024
):
super().__init__()
self.generator = generator
self.batch_size = batch_size
self.bucket_size = bucket_size
self.bucket_num = math.ceil(max_length / bucket_size)
self.buckets = [[] for _ in range(self.bucket_num)]
self.bucket_idx = None
self.accelerator = accelerator
if self.accelerator is not None:
self.buckets_ele_num = torch.tensor(
[0] * self.bucket_num, dtype=torch.int64, device=accelerator.device
)
self.buckets_indexes = torch.arange(
self.bucket_num, device=accelerator.device
)
self.finished = False
self.has_no_same_bucket = False
self.rest = None
def __iter__(self):
if self.batch_size <= 1:
return self.generator
def bucket_iter():
while True:
if self.bucket_idx is not None:
sample = self.buckets[self.bucket_idx].pop()
if len(self.buckets[self.bucket_idx]) == 0:
self.bucket_idx = None
yield sample
try:
sample = next(self.generator)
except StopIteration:
break
sample_len = len(sample) - 1
bucket_idx = sample_len // self.bucket_size
if len(self.buckets[bucket_idx]) == self.batch_size - 1:
self.bucket_idx = bucket_idx
yield sample
else:
self.buckets[bucket_idx].append(sample)
def parallel_bucket_iter():
while True:
if self.bucket_idx is not None:
sample = self.buckets[self.bucket_idx].pop()
self.buckets_ele_num[self.bucket_idx] -= 1
buckets_ele_num = self.accelerator.gather(self.buckets_ele_num)
buckets_ele_num = buckets_ele_num.reshape(
self.accelerator.num_processes, self.bucket_num
)
min_buckets_ele_num = buckets_ele_num.min(dim=0)[0]
if min_buckets_ele_num[self.bucket_idx] <= 0:
self.bucket_idx = None
yield sample
else:
if self.finished:
if self.has_no_same_bucket:
if self.rest is None:
self.rest = []
for bucket in self.buckets:
for i in bucket:
self.rest.append(i)
elif len(self.rest) > 0:
yield self.rest.pop()
else:
raise StopIteration()
else:
buckets_ele_num = self.accelerator.gather(
self.buckets_ele_num
)
buckets_ele_num = buckets_ele_num.view(
self.accelerator.num_processes, self.bucket_num
)
min_buckets_ele_num = buckets_ele_num.min(dim=0)[0]
valid_bucket_idx = self.buckets_indexes[
min_buckets_ele_num >= self.batch_size
]
if len(valid_bucket_idx) > 0:
self.bucket_idx = valid_bucket_idx[0].cpu().item()
else:
self.has_no_same_bucket = True
else:
try:
sample = next(self.generator)
except StopIteration:
self.finished = True
continue
sample_len = len(sample) - 1
bucket_idx = sample_len // self.bucket_size
self.buckets[bucket_idx].append(sample)
self.buckets_ele_num[bucket_idx] += 1
buckets_ele_num = self.accelerator.gather(
self.buckets_ele_num
).cpu()
buckets_ele_num = buckets_ele_num.view(
self.accelerator.num_processes, self.bucket_num
)
min_buckets_ele_num = buckets_ele_num.min(dim=0)[0]
valid_bucket_idx = self.buckets_indexes[
min_buckets_ele_num >= self.batch_size
]
if len(valid_bucket_idx) > 0:
self.bucket_idx = valid_bucket_idx[0].cpu().item()
if self.accelerator:
return parallel_bucket_iter()
else:
return bucket_iter()
if __name__ == "__main__":
import sentencepiece as spm
from datasets import IterableDataset
from torch.utils.data import DataLoader
from dataset.pretrain_dataset import preprocess_wudao_gen, preprocess_the_pile_gen
from dataset.tokenizer import Tokenizer
from dataset.data_iter import create_shard_kwargs, create_data_iter
sp_model = spm.SentencePieceProcessor(
model_file="configs/10w_vocab_wudao5_pile10.model"
)
tokenizer = Tokenizer(sp_model)
patterns = ["data/pretrain_data/part-*.jsonl.zst"]
paths = create_shard_kwargs(patterns)
transform_dict = {
"wudao": preprocess_wudao_gen(tokenizer),
"pile": preprocess_the_pile_gen(tokenizer),
}
data_set = IterableDataset.from_generator(
create_data_iter, gen_kwargs={"paths": paths, "transform_dict": transform_dict}
)
train_loader = DataLoader(
data_set,
batch_size=8,
num_workers=4,
collate_fn=pretrain_collate_fn_gen(tokenizer),
drop_last=True,
)
for batch in train_loader:
for k, v in batch.items():
print(k, v.shape)
break