mirror of
https://git.code.sf.net/p/seeddms/code
synced 2025-02-06 07:04:57 +00:00
used for workflow graphs
This commit is contained in:
parent
2b3321df7c
commit
d8638caa34
599
styles/bootstrap/dracula/dracula_algorithms.js
Normal file
599
styles/bootstrap/dracula/dracula_algorithms.js
Normal file
|
@ -0,0 +1,599 @@
|
|||
/*
|
||||
* Various algorithms and data structures, licensed under the MIT-license.
|
||||
* (c) 2010 by Johann Philipp Strathausen <strathausen@gmail.com>
|
||||
* http://strathausen.eu
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Bellman-Ford
|
||||
|
||||
Path-finding algorithm, finds the shortest paths from one node to all nodes.
|
||||
|
||||
|
||||
Complexity
|
||||
|
||||
O( |E| · |V| ), where E = edges and V = vertices (nodes)
|
||||
|
||||
|
||||
Constraints
|
||||
|
||||
Can run on graphs with negative edge weights as long as they do not have
|
||||
any negative weight cycles.
|
||||
|
||||
*/
|
||||
function bellman_ford(g, source) {
|
||||
|
||||
/* STEP 1: initialisation */
|
||||
for(var n in g.nodes)
|
||||
g.nodes[n].distance = Infinity;
|
||||
/* predecessors are implicitly null */
|
||||
source.distance = 0;
|
||||
|
||||
step("Initially, all distances are infinite and all predecessors are null.");
|
||||
|
||||
/* STEP 2: relax each edge (this is at the heart of Bellman-Ford) */
|
||||
/* repeat this for the number of nodes minus one */
|
||||
for(var i = 1; i < g.nodes.length; i++)
|
||||
/* for each edge */
|
||||
for(var e in g.edges) {
|
||||
var edge = g.edges[e];
|
||||
if(edge.source.distance + edge.weight < edge.target.distance) {
|
||||
step("Relax edge between " + edge.source.id + " and " + edge.target.id + ".");
|
||||
edge.target.distance = edge.source.distance + edge.weight;
|
||||
edge.target.predecessor = edge.source;
|
||||
}
|
||||
//Added by Jake Stothard (Needs to be tested)
|
||||
if(!edge.style.directed) {
|
||||
if(edge.target.distance + edge.weight < edge.source.distance) {
|
||||
g.snapShot("Relax edge between "+edge.target.id+" and "+edge.source.id+".");
|
||||
edge.source.distance = edge.target.distance + edge.weight;
|
||||
edge.source.predecessor = edge.target;
|
||||
}
|
||||
}
|
||||
}
|
||||
step("Ready.");
|
||||
|
||||
/* STEP 3: TODO Check for negative cycles */
|
||||
/* For now we assume here that the graph does not contain any negative
|
||||
weights cycles. (this is left as an excercise to the reader[tm]) */
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Path-finding algorithm Dijkstra
|
||||
|
||||
- worst-case running time is O((|E| + |V|) · log |V| ) thus better than
|
||||
Bellman-Ford for sparse graphs (with less edges), but cannot handle
|
||||
negative edge weights
|
||||
*/
|
||||
function dijkstra(g, source) {
|
||||
|
||||
/* initially, all distances are infinite and all predecessors are null */
|
||||
for(var n in g.nodes)
|
||||
g.nodes[n].distance = Infinity;
|
||||
/* predecessors are implicitly null */
|
||||
|
||||
g.snapShot("Initially, all distances are infinite and all predecessors are null.");
|
||||
|
||||
source.distance = 0;
|
||||
/* set of unoptimized nodes, sorted by their distance (but a Fibonacci heap
|
||||
would be better) */
|
||||
var q = new BinaryMinHeap(g.nodes, "distance");
|
||||
|
||||
/* pointer to the node in focus */
|
||||
var node;
|
||||
|
||||
/* get the node with the smallest distance
|
||||
as long as we have unoptimized nodes. q.min() can have O(log n). */
|
||||
while(q.min() != undefined) {
|
||||
/* remove the latest */
|
||||
node = q.extractMin();
|
||||
node.optimized = true;
|
||||
|
||||
/* no nodes accessible from this one, should not happen */
|
||||
if(node.distance == Infinity)
|
||||
throw "Orphaned node!";
|
||||
|
||||
/* for each neighbour of node */
|
||||
for(e in node.edges) {
|
||||
var other = (node == node.edges[e].target) ? node.edges[e].source : node.edges[e].target;
|
||||
|
||||
if(other.optimized)
|
||||
continue;
|
||||
|
||||
/* look for an alternative route */
|
||||
var alt = node.distance + node.edges[e].weight;
|
||||
|
||||
/* update distance and route if a better one has been found */
|
||||
if (alt < other.distance) {
|
||||
|
||||
/* update distance of neighbour */
|
||||
other.distance = alt;
|
||||
|
||||
/* update priority queue */
|
||||
q.heapify();
|
||||
|
||||
/* update path */
|
||||
other.predecessor = node;
|
||||
g.snapShot("Enhancing node.")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* All-Pairs-Shortest-Paths */
|
||||
/* Runs at worst in O(|V|³) and at best in Omega(|V|³) :-)
|
||||
complexity Sigma(|V|²) */
|
||||
/* This implementation is not yet ready for general use, but works with the
|
||||
Dracula graph library. */
|
||||
function floyd_warshall(g, source) {
|
||||
|
||||
/* Step 1: initialising empty path matrix (second dimension is implicit) */
|
||||
var path = [];
|
||||
var next = [];
|
||||
var n = g.nodes.length;
|
||||
|
||||
/* construct path matrix, initialize with Infinity */
|
||||
for(j in g.nodes) {
|
||||
path[j] = [];
|
||||
next[j] = [];
|
||||
for(i in g.nodes)
|
||||
path[j][i] = j == i ? 0 : Infinity;
|
||||
}
|
||||
|
||||
/* initialize path with edge weights */
|
||||
for(e in g.edges)
|
||||
path[g.edges[e].source.id][g.edges[e].target.id] = g.edges[e].weight;
|
||||
|
||||
/* Note: Usually, the initialisation is done by getting the edge weights
|
||||
from a node matrix representation of the graph, not by iterating through
|
||||
a list of edges as done here. */
|
||||
|
||||
/* Step 2: find best distances (the heart of Floyd-Warshall) */
|
||||
for(k in g.nodes){
|
||||
for(i in g.nodes) {
|
||||
for(j in g.nodes)
|
||||
if(path[i][j] > path[i][k] + path[k][j]) {
|
||||
path[i][j] = path[i][k] + path[k][j];
|
||||
/* Step 2.b: remember the path */
|
||||
next[i][j] = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Step 3: Path reconstruction, get shortest path */
|
||||
function getPath(i, j) {
|
||||
if(path[i][j] == Infinity)
|
||||
throw "There is no path.";
|
||||
var intermediate = next[i][j];
|
||||
if(intermediate == undefined)
|
||||
return null;
|
||||
else
|
||||
return getPath(i, intermediate)
|
||||
.concat([intermediate])
|
||||
.concat(getPath(intermediate, j));
|
||||
}
|
||||
|
||||
/* TODO use the knowledge, e.g. mark path in graph */
|
||||
}
|
||||
|
||||
/*
|
||||
Ford-Fulkerson
|
||||
|
||||
Max-Flow-Min-Cut Algorithm finding the maximum flow through a directed
|
||||
graph from source to sink.
|
||||
|
||||
|
||||
Complexity
|
||||
|
||||
O(E * max(f)), max(f) being the maximum flow
|
||||
|
||||
|
||||
Description
|
||||
|
||||
As long as there is an open path through the residual graph, send the
|
||||
minimum of the residual capacities on the path.
|
||||
|
||||
|
||||
Constraints
|
||||
|
||||
The algorithm works only if all weights are integers. Otherwise it is
|
||||
possible that the Ford–Fulkerson algorithm will not converge to the maximum
|
||||
value.
|
||||
|
||||
|
||||
Input
|
||||
|
||||
g - Graph object
|
||||
s - Source ID
|
||||
t - Target (sink) ID
|
||||
|
||||
|
||||
Output
|
||||
|
||||
Maximum flow from Source s to Target t
|
||||
|
||||
*/
|
||||
/*
|
||||
Edmonds-Karp
|
||||
|
||||
Max-Flow-Min-Cut Algorithm finding the maximum flow through a directed
|
||||
graph from source to sink. An implementation of the Ford-Fulkerson
|
||||
algorithm.
|
||||
|
||||
|
||||
Complexity
|
||||
|
||||
O(|V|*|E|²)
|
||||
|
||||
|
||||
Input
|
||||
|
||||
g - Graph object (with node and edge lists, capacity is a property of edge)
|
||||
s - source ID
|
||||
t - sink ID
|
||||
|
||||
*/
|
||||
function edmonds_karp(g, s, t) {
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
A simple binary min-heap serving as a priority queue
|
||||
- takes an array as the input, with elements having a key property
|
||||
- elements will look like this:
|
||||
{
|
||||
key: "... key property ...",
|
||||
value: "... element content ..."
|
||||
}
|
||||
- provides insert(), min(), extractMin() and heapify()
|
||||
- example usage (e.g. via the Firebug or Chromium console):
|
||||
var x = {foo: 20, hui: "bla"};
|
||||
var a = new BinaryMinHeap([x,{foo:3},{foo:10},{foo:20},{foo:30},{foo:6},{foo:1},{foo:3}],"foo");
|
||||
console.log(a.extractMin());
|
||||
console.log(a.extractMin());
|
||||
x.foo = 0; // update key
|
||||
a.heapify(); // call this always after having a key updated
|
||||
console.log(a.extractMin());
|
||||
console.log(a.extractMin());
|
||||
- can also be used on a simple array, like [9,7,8,5]
|
||||
*/
|
||||
function BinaryMinHeap(array, key) {
|
||||
|
||||
/* Binary tree stored in an array, no need for a complicated data structure */
|
||||
var tree = [];
|
||||
|
||||
var key = key || 'key';
|
||||
|
||||
/* Calculate the index of the parent or a child */
|
||||
var parent = function(index) { return Math.floor((index - 1)/2); };
|
||||
var right = function(index) { return 2 * index + 2; };
|
||||
var left = function(index) { return 2 * index + 1; };
|
||||
|
||||
/* Helper function to swap elements with their parent
|
||||
as long as the parent is bigger */
|
||||
function bubble_up(i) {
|
||||
var p = parent(i);
|
||||
while((p >= 0) && (tree[i][key] < tree[p][key])) {
|
||||
/* swap with parent */
|
||||
tree[i] = tree.splice(p, 1, tree[i])[0];
|
||||
/* go up one level */
|
||||
i = p;
|
||||
p = parent(i);
|
||||
}
|
||||
}
|
||||
|
||||
/* Helper function to swap elements with the smaller of their children
|
||||
as long as there is one */
|
||||
function bubble_down(i) {
|
||||
var l = left(i);
|
||||
var r = right(i);
|
||||
|
||||
/* as long as there are smaller children */
|
||||
while(tree[l] && (tree[i][key] > tree[l][key]) || tree[r] && (tree[i][key] > tree[r][key])) {
|
||||
|
||||
/* find smaller child */
|
||||
var child = tree[l] ? tree[r] ? tree[l][key] > tree[r][key] ? r : l : l : l;
|
||||
|
||||
/* swap with smaller child with current element */
|
||||
tree[i] = tree.splice(child, 1, tree[i])[0];
|
||||
|
||||
/* go up one level */
|
||||
i = child;
|
||||
l = left(i);
|
||||
r = right(i);
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert a new element with respect to the heap property
|
||||
1. Insert the element at the end
|
||||
2. Bubble it up until it is smaller than its parent */
|
||||
this.insert = function(element) {
|
||||
|
||||
/* make sure there's a key property */
|
||||
(element[key] == undefined) && (element = {key:element});
|
||||
|
||||
/* insert element at the end */
|
||||
tree.push(element);
|
||||
|
||||
/* bubble up the element */
|
||||
bubble_up(tree.length - 1);
|
||||
}
|
||||
|
||||
/* Only show us the minimum */
|
||||
this.min = function() {
|
||||
return tree.length == 1 ? undefined : tree[0];
|
||||
}
|
||||
|
||||
/* Return and remove the minimum
|
||||
1. Take the root as the minimum that we are looking for
|
||||
2. Move the last element to the root (thereby deleting the root)
|
||||
3. Compare the new root with both of its children, swap it with the
|
||||
smaller child and then check again from there (bubble down)
|
||||
*/
|
||||
this.extractMin = function() {
|
||||
var result = this.min();
|
||||
|
||||
/* move the last element to the root or empty the tree completely */
|
||||
/* bubble down the new root if necessary */
|
||||
(tree.length == 1) && (tree = []) || (tree[0] = tree.pop()) && bubble_down(0);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* currently unused, TODO implement */
|
||||
this.changeKey = function(index, key) {
|
||||
throw "function not implemented";
|
||||
}
|
||||
|
||||
this.heapify = function() {
|
||||
for(var start = Math.floor((tree.length - 2) / 2); start >= 0; start--) {
|
||||
bubble_down(start);
|
||||
}
|
||||
}
|
||||
|
||||
/* insert the input elements one by one only when we don't have a key property (TODO can be done more elegant) */
|
||||
for(i in (array || []))
|
||||
this.insert(array[i]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Quick Sort:
|
||||
1. Select some random value from the array, the median.
|
||||
2. Divide the array in three smaller arrays according to the elements
|
||||
being less, equal or greater than the median.
|
||||
3. Recursively sort the array containg the elements less than the
|
||||
median and the one containing elements greater than the median.
|
||||
4. Concatenate the three arrays (less, equal and greater).
|
||||
5. One or no element is always sorted.
|
||||
TODO: This could be implemented more efficiently by using only one array object and several pointers.
|
||||
*/
|
||||
function quickSort(arr) {
|
||||
/* recursion anchor: one element is always sorted */
|
||||
if(arr.length <= 1) return arr;
|
||||
/* randomly selecting some value */
|
||||
var median = arr[Math.floor(Math.random() * arr.length)];
|
||||
var arr1 = [], arr2 = [], arr3 = [];
|
||||
for(var i in arr) {
|
||||
arr[i] < median && arr1.push(arr[i]);
|
||||
arr[i] == median && arr2.push(arr[i]);
|
||||
arr[i] > median && arr3.push(arr[i]);
|
||||
}
|
||||
/* recursive sorting and assembling final result */
|
||||
return quickSort(arr1).concat(arr2).concat(quickSort(arr3));
|
||||
}
|
||||
|
||||
/*
|
||||
Selection Sort:
|
||||
1. Select the minimum and remove it from the array
|
||||
2. Sort the rest recursively
|
||||
3. Return the minimum plus the sorted rest
|
||||
4. An array with only one element is already sorted
|
||||
*/
|
||||
function selectionSort(arr) {
|
||||
/* recursion anchor: one element is always sorted */
|
||||
if(arr.length == 1) return arr;
|
||||
var minimum = Infinity;
|
||||
var index;
|
||||
for(var i in arr) {
|
||||
if(arr[i] < minimum) {
|
||||
minimum = arr[i];
|
||||
index = i; /* remember the minimum index for later removal */
|
||||
}
|
||||
}
|
||||
/* remove the minimum */
|
||||
arr.splice(index, 1);
|
||||
/* assemble result and sort recursively (could be easily done iteratively as well)*/
|
||||
return [minimum].concat(selectionSort(arr));
|
||||
}
|
||||
|
||||
/*
|
||||
Merge Sort:
|
||||
1. Cut the array in half
|
||||
2. Sort each of them recursively
|
||||
3. Merge the two sorted arrays
|
||||
4. An array with only one element is considered sorted
|
||||
|
||||
*/
|
||||
function mergeSort(arr) {
|
||||
/* merges two sorted arrays into one sorted array */
|
||||
function merge(a, b) {
|
||||
/* result set */
|
||||
var c = [];
|
||||
/* as long as there are elements in the arrays to be merged */
|
||||
while(a.length > 0 || b.length > 0){
|
||||
/* are there elements to be merged, if yes, compare them and merge */
|
||||
var n = a.length > 0 && b.length > 0 ? a[0] < b[0] ? a.shift() : b.shift() : b.length > 0 ? b.shift() : a.length > 0 ? a.shift() : null;
|
||||
/* always push the smaller one onto the result set */
|
||||
n != null && c.push(n);
|
||||
}
|
||||
return c;
|
||||
}
|
||||
/* this mergeSort implementation cuts the array in half, wich should be fine with randomized arrays, but introduces the risk of a worst-case scenario */
|
||||
median = Math.floor(arr.length / 2);
|
||||
var part1 = arr.slice(0, median); /* for some reason it doesn't work if inserted directly in the return statement (tried so with firefox) */
|
||||
var part2 = arr.slice(median - arr.length);
|
||||
return arr.length <= 1 ? arr : merge(
|
||||
mergeSort(part1), /* first half */
|
||||
mergeSort(part2) /* second half */
|
||||
);
|
||||
}
|
||||
|
||||
/* Balanced Red-Black-Tree */
|
||||
function RedBlackTree(arr) {
|
||||
|
||||
}
|
||||
|
||||
function BTree(arr) {
|
||||
|
||||
}
|
||||
|
||||
function NaryTree(n, arr) {
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Knuth-Morris-Pratt string matching algorithm - finds a pattern in a text.
|
||||
* FIXME: Doesn't work correctly yet.
|
||||
*/
|
||||
function kmp(p, t) {
|
||||
|
||||
/**
|
||||
* PREFIX, OVERLAP or FALIURE function for KMP. Computes how many iterations
|
||||
* the algorithm can skip after a mismatch.
|
||||
*
|
||||
* @input p - pattern (string)
|
||||
* @result array of skippable iterations
|
||||
*/
|
||||
function prefix(p) {
|
||||
/* pi contains the computed skip marks */
|
||||
var pi = [0], k = 0;
|
||||
for(q = 1; q < p.length; q++) {
|
||||
while(k > 0 && (p.charAt(k) != p.charAt(q)))
|
||||
k = pi[k-1];
|
||||
|
||||
(p.charAt(k) == p.charAt(q)) && k++;
|
||||
|
||||
pi[q] = k;
|
||||
}
|
||||
return pi;
|
||||
}
|
||||
|
||||
/* The actual KMP algorithm starts here. */
|
||||
|
||||
var pi = prefix(p), q = 0, result = [];
|
||||
|
||||
for(var i = 0; i < t.length; i++) {
|
||||
/* jump forward as long as the character doesn't match */
|
||||
while((q > 0) && (p.charAt(q) != t.charAt(i)))
|
||||
q = pi[q];
|
||||
|
||||
(p.charAt(q) == t.charAt(i)) && q++;
|
||||
|
||||
(q == p.length) && result.push(i - p.length) && (q = pi[q]);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* step for algorithm visualisation */
|
||||
function step(comment, funct) {
|
||||
//wait for input
|
||||
//display comment (before or after waiting)
|
||||
// next.wait();
|
||||
/* execute callback function */
|
||||
funct();
|
||||
}
|
||||
|
||||
/**
|
||||
* Curry - Function currying
|
||||
* Copyright (c) 2008 Ariel Flesler - aflesler(at)gmail(dot)com | http://flesler.blogspot.com
|
||||
* Licensed under BSD (http://www.opensource.org/licenses/bsd-license.php)
|
||||
* Date: 10/4/2008
|
||||
*
|
||||
* @author Ariel Flesler
|
||||
* @version 1.0.1
|
||||
*/
|
||||
function curry( fn ){
|
||||
return function(){
|
||||
var args = curry.args(arguments),
|
||||
master = arguments.callee,
|
||||
self = this;
|
||||
|
||||
return args.length >= fn.length ? fn.apply(self,args) : function(){
|
||||
return master.apply( self, args.concat(curry.args(arguments)) );
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
curry.args = function( args ){
|
||||
return Array.prototype.slice.call(args);
|
||||
};
|
||||
|
||||
Function.prototype.curry = function(){
|
||||
return curry(this);
|
||||
};
|
||||
|
||||
/**
|
||||
* Topological Sort
|
||||
*
|
||||
* Sort a directed graph based on incoming edges
|
||||
*
|
||||
* Coded by Jake Stothard
|
||||
*/
|
||||
function topological_sort(g) {
|
||||
//Mark nodes as "deleted" instead of actually deleting them
|
||||
//That way we don't have to copy g
|
||||
|
||||
for(i in g.nodes)
|
||||
g.nodes[i].deleted = false;
|
||||
|
||||
var ret = topological_sort_helper(g);
|
||||
|
||||
//Cleanup: Remove the deleted property
|
||||
for(i in g.nodes)
|
||||
delete g.nodes[i].deleted
|
||||
|
||||
return ret;
|
||||
}
|
||||
function topological_sort_helper(g) {
|
||||
//Find node with no incoming edges
|
||||
var node;
|
||||
for(i in g.nodes) {
|
||||
if(g.nodes[i].deleted)
|
||||
continue; //Bad style, meh
|
||||
|
||||
var incoming = false;
|
||||
for(j in g.nodes[i].edges) {
|
||||
if(g.nodes[i].edges[j].target == g.nodes[i]
|
||||
&& g.nodes[i].edges[j].source.deleted == false) {
|
||||
incoming = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!incoming) {
|
||||
node = g.nodes[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Either unsortable or done. Either way, GTFO
|
||||
if(node == undefined)
|
||||
return [];
|
||||
|
||||
//"Delete" node from g
|
||||
node.deleted = true;
|
||||
|
||||
var tail = topological_sort_helper(g);
|
||||
|
||||
tail.unshift(node);
|
||||
|
||||
return tail;
|
||||
}
|
106
styles/bootstrap/dracula/dracula_graffle.js
Normal file
106
styles/bootstrap/dracula/dracula_graffle.js
Normal file
|
@ -0,0 +1,106 @@
|
|||
/**
|
||||
* Originally grabbed from the official RaphaelJS Documentation
|
||||
* http://raphaeljs.com/graffle.html
|
||||
* Adopted (arrows) and commented by Philipp Strathausen http://blog.ameisenbar.de
|
||||
* Licenced under the MIT licence.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Usage:
|
||||
* connect two shapes
|
||||
* parameters:
|
||||
* source shape [or connection for redrawing],
|
||||
* target shape,
|
||||
* style with { fg : linecolor, bg : background color, directed: boolean }
|
||||
* returns:
|
||||
* connection { draw = function() }
|
||||
*/
|
||||
Raphael.fn.connection = function (obj1, obj2, style) {
|
||||
var selfRef = this;
|
||||
/* create and return new connection */
|
||||
var edge = {/*
|
||||
from : obj1,
|
||||
to : obj2,
|
||||
style : style,*/
|
||||
draw : function() {
|
||||
/* get bounding boxes of target and source */
|
||||
var bb1 = obj1.getBBox();
|
||||
var bb2 = obj2.getBBox();
|
||||
var off1 = 0;
|
||||
var off2 = 0;
|
||||
/* coordinates for potential connection coordinates from/to the objects */
|
||||
var p = [
|
||||
{x: bb1.x + bb1.width / 2, y: bb1.y - off1}, /* NORTH 1 */
|
||||
{x: bb1.x + bb1.width / 2, y: bb1.y + bb1.height + off1}, /* SOUTH 1 */
|
||||
{x: bb1.x - off1, y: bb1.y + bb1.height / 2}, /* WEST 1 */
|
||||
{x: bb1.x + bb1.width + off1, y: bb1.y + bb1.height / 2}, /* EAST 1 */
|
||||
{x: bb2.x + bb2.width / 2, y: bb2.y - off2}, /* NORTH 2 */
|
||||
{x: bb2.x + bb2.width / 2, y: bb2.y + bb2.height + off2}, /* SOUTH 2 */
|
||||
{x: bb2.x - off2, y: bb2.y + bb2.height / 2}, /* WEST 2 */
|
||||
{x: bb2.x + bb2.width + off2, y: bb2.y + bb2.height / 2} /* EAST 2 */
|
||||
];
|
||||
|
||||
/* distances between objects and according coordinates connection */
|
||||
var d = {}, dis = [];
|
||||
|
||||
/*
|
||||
* find out the best connection coordinates by trying all possible ways
|
||||
*/
|
||||
/* loop the first object's connection coordinates */
|
||||
for (var i = 0; i < 4; i++) {
|
||||
/* loop the seond object's connection coordinates */
|
||||
for (var j = 4; j < 8; j++) {
|
||||
var dx = Math.abs(p[i].x - p[j].x),
|
||||
dy = Math.abs(p[i].y - p[j].y);
|
||||
if ((i == j - 4) || (((i != 3 && j != 6) || p[i].x < p[j].x) && ((i != 2 && j != 7) || p[i].x > p[j].x) && ((i != 0 && j != 5) || p[i].y > p[j].y) && ((i != 1 && j != 4) || p[i].y < p[j].y))) {
|
||||
dis.push(dx + dy);
|
||||
d[dis[dis.length - 1].toFixed(3)] = [i, j];
|
||||
}
|
||||
}
|
||||
}
|
||||
var res = dis.length == 0 ? [0, 4] : d[Math.min.apply(Math, dis).toFixed(3)];
|
||||
/* bezier path */
|
||||
var x1 = p[res[0]].x,
|
||||
y1 = p[res[0]].y,
|
||||
x4 = p[res[1]].x,
|
||||
y4 = p[res[1]].y,
|
||||
dx = Math.max(Math.abs(x1 - x4) / 2, 10),
|
||||
dy = Math.max(Math.abs(y1 - y4) / 2, 10),
|
||||
x2 = [x1, x1, x1 - dx, x1 + dx][res[0]].toFixed(3),
|
||||
y2 = [y1 - dy, y1 + dy, y1, y1][res[0]].toFixed(3),
|
||||
x3 = [0, 0, 0, 0, x4, x4, x4 - dx, x4 + dx][res[1]].toFixed(3),
|
||||
y3 = [0, 0, 0, 0, y1 + dy, y1 - dy, y4, y4][res[1]].toFixed(3);
|
||||
/* assemble path and arrow */
|
||||
var path = ["M", x1.toFixed(3), y1.toFixed(3), "C", x2, y2, x3, y3, x4.toFixed(3), y4.toFixed(3)].join(",");
|
||||
/* arrow */
|
||||
if(style && style.directed) {
|
||||
/* magnitude, length of the last path vector */
|
||||
var mag = Math.sqrt((y4 - y3) * (y4 - y3) + (x4 - x3) * (x4 - x3));
|
||||
/* vector normalisation to specified length */
|
||||
var norm = function(x,l){return (-x*(l||5)/mag);};
|
||||
/* calculate array coordinates (two lines orthogonal to the path vector) */
|
||||
var arr = [
|
||||
{x:(norm(x4-x3)+norm(y4-y3)+x4).toFixed(3), y:(norm(y4-y3)+norm(x4-x3)+y4).toFixed(3)},
|
||||
{x:(norm(x4-x3)-norm(y4-y3)+x4).toFixed(3), y:(norm(y4-y3)-norm(x4-x3)+y4).toFixed(3)}
|
||||
];
|
||||
path = path + ",M"+arr[0].x+","+arr[0].y+",L"+x4+","+y4+",L"+arr[1].x+","+arr[1].y;
|
||||
}
|
||||
/* function to be used for moving existent path(s), e.g. animate() or attr() */
|
||||
var move = "attr";
|
||||
/* applying path(s) */
|
||||
edge.fg && edge.fg[move]({path:path})
|
||||
|| (edge.fg = selfRef.path(path).attr({stroke: style && style.stroke || "#000", fill: "none"}).toBack());
|
||||
edge.bg && edge.bg[move]({path:path})
|
||||
|| style && style.fill && (edge.bg = style.fill.split && selfRef.path(path).attr({stroke: style.fill.split("|")[0], fill: "none", "stroke-width": style.fill.split("|")[1] || 3}).toBack());
|
||||
/* setting label */
|
||||
style && style.label
|
||||
&& (edge.label && edge.label.attr({x:(x1+x4)/2, y:(y1+y4)/2})
|
||||
|| (edge.label = selfRef.text((x1+x4)/2, (y1+y4)/2, style.label).attr({fill: "#000", "font-size": style["font-size"] || "12px"})));
|
||||
style && style.label && style["label-style"] && edge.label && edge.label.attr(style["label-style"]);
|
||||
style && style.callback && style.callback(edge);
|
||||
}
|
||||
}
|
||||
edge.draw();
|
||||
return edge;
|
||||
};
|
||||
//Raphael.prototype.set.prototype.dodo=function(){console.log("works");};
|
527
styles/bootstrap/dracula/dracula_graph.js
Normal file
527
styles/bootstrap/dracula/dracula_graph.js
Normal file
|
@ -0,0 +1,527 @@
|
|||
/*
|
||||
* Dracula Graph Layout and Drawing Framework 0.0.3alpha
|
||||
* (c) 2010 Philipp Strathausen <strathausen@gmail.com>, http://strathausen.eu
|
||||
* Contributions by Jake Stothard <stothardj@gmail.com>.
|
||||
*
|
||||
* based on the Graph JavaScript framework, version 0.0.1
|
||||
* (c) 2006 Aslak Hellesoy <aslak.hellesoy@gmail.com>
|
||||
* (c) 2006 Dave Hoover <dave.hoover@gmail.com>
|
||||
*
|
||||
* Ported from Graph::Layouter::Spring in
|
||||
* http://search.cpan.org/~pasky/Graph-Layderer-0.02/
|
||||
* The algorithm is based on a spring-style layouter of a Java-based social
|
||||
* network tracker PieSpy written by Paul Mutton <paul@jibble.org>.
|
||||
*
|
||||
* This code is freely distributable under the MIT license. Commercial use is
|
||||
* hereby granted without any cost or restriction.
|
||||
*
|
||||
* Links:
|
||||
*
|
||||
* Graph Dracula JavaScript Framework:
|
||||
* http://graphdracula.net
|
||||
*
|
||||
/*--------------------------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Edge Factory
|
||||
*/
|
||||
var AbstractEdge = function() {
|
||||
}
|
||||
AbstractEdge.prototype = {
|
||||
hide: function() {
|
||||
this.connection.fg.hide();
|
||||
this.connection.bg && this.bg.connection.hide();
|
||||
}
|
||||
};
|
||||
var EdgeFactory = function() {
|
||||
this.template = new AbstractEdge();
|
||||
this.template.style = new Object();
|
||||
this.template.style.directed = false;
|
||||
this.template.weight = 1;
|
||||
};
|
||||
EdgeFactory.prototype = {
|
||||
build: function(source, target) {
|
||||
var e = jQuery.extend(true, {}, this.template);
|
||||
e.source = source;
|
||||
e.target = target;
|
||||
return e;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Graph
|
||||
*/
|
||||
var Graph = function() {
|
||||
this.nodes = {};
|
||||
this.edges = [];
|
||||
this.snapshots = []; // previous graph states TODO to be implemented
|
||||
this.edgeFactory = new EdgeFactory();
|
||||
};
|
||||
Graph.prototype = {
|
||||
/*
|
||||
* add a node
|
||||
* @id the node's ID (string or number)
|
||||
* @content (optional, dictionary) can contain any information that is
|
||||
* being interpreted by the layout algorithm or the graph
|
||||
* representation
|
||||
*/
|
||||
addNode: function(id, content) {
|
||||
/* testing if node is already existing in the graph */
|
||||
if(this.nodes[id] == undefined) {
|
||||
this.nodes[id] = new Graph.Node(id, content);
|
||||
}
|
||||
return this.nodes[id];
|
||||
},
|
||||
|
||||
addEdge: function(source, target, style) {
|
||||
var s = this.addNode(source);
|
||||
var t = this.addNode(target);
|
||||
var edge = this.edgeFactory.build(s, t);
|
||||
jQuery.extend(edge.style,style);
|
||||
s.edges.push(edge);
|
||||
this.edges.push(edge);
|
||||
// NOTE: Even directed edges are added to both nodes.
|
||||
t.edges.push(edge);
|
||||
},
|
||||
|
||||
/* TODO to be implemented
|
||||
* Preserve a copy of the graph state (nodes, positions, ...)
|
||||
* @comment a comment describing the state
|
||||
*/
|
||||
snapShot: function(comment) {
|
||||
/* FIXME
|
||||
var graph = new Graph();
|
||||
graph.nodes = jQuery.extend(true, {}, this.nodes);
|
||||
graph.edges = jQuery.extend(true, {}, this.edges);
|
||||
this.snapshots.push({comment: comment, graph: graph});
|
||||
*/
|
||||
},
|
||||
removeNode: function(id) {
|
||||
delete this.nodes[id];
|
||||
for(var i = 0; i < this.edges.length; i++) {
|
||||
if (this.edges[i].source.id == id || this.edges[i].target.id == id) {
|
||||
this.edges.splice(i, 1);
|
||||
i--;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Node
|
||||
*/
|
||||
Graph.Node = function(id, node){
|
||||
node = node || {};
|
||||
node.id = id;
|
||||
node.edges = [];
|
||||
node.hide = function() {
|
||||
this.hidden = true;
|
||||
this.shape && this.shape.hide(); /* FIXME this is representation specific code and should be elsewhere */
|
||||
for(i in this.edges)
|
||||
(this.edges[i].source.id == id || this.edges[i].target == id) && this.edges[i].hide && this.edges[i].hide();
|
||||
};
|
||||
node.show = function() {
|
||||
this.hidden = false;
|
||||
this.shape && this.shape.show();
|
||||
for(i in this.edges)
|
||||
(this.edges[i].source.id == id || this.edges[i].target == id) && this.edges[i].show && this.edges[i].show();
|
||||
};
|
||||
return node;
|
||||
};
|
||||
Graph.Node.prototype = {
|
||||
};
|
||||
|
||||
/*
|
||||
* Renderer base class
|
||||
*/
|
||||
Graph.Renderer = {};
|
||||
|
||||
/*
|
||||
* Renderer implementation using RaphaelJS
|
||||
*/
|
||||
Graph.Renderer.Raphael = function(element, graph, width, height) {
|
||||
this.width = width || 400;
|
||||
this.height = height || 400;
|
||||
var selfRef = this;
|
||||
this.r = Raphael(element, this.width, this.height);
|
||||
this.radius = 40; /* max dimension of a node */
|
||||
this.graph = graph;
|
||||
this.mouse_in = false;
|
||||
|
||||
/* TODO default node rendering function */
|
||||
if(!this.graph.render) {
|
||||
this.graph.render = function() {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Dragging
|
||||
*/
|
||||
this.isDrag = false;
|
||||
this.dragger = function (e) {
|
||||
this.dx = e.clientX;
|
||||
this.dy = e.clientY;
|
||||
selfRef.isDrag = this;
|
||||
this.set && this.set.animate({"fill-opacity": .1}, 200) && this.set.toFront();
|
||||
e.preventDefault && e.preventDefault();
|
||||
};
|
||||
|
||||
var d = document.getElementById(element);
|
||||
d.onmousemove = function (e) {
|
||||
e = e || window.event;
|
||||
if (selfRef.isDrag) {
|
||||
var bBox = selfRef.isDrag.set.getBBox();
|
||||
// TODO round the coordinates here (eg. for proper image representation)
|
||||
var newX = e.clientX - selfRef.isDrag.dx + (bBox.x + bBox.width / 2);
|
||||
var newY = e.clientY - selfRef.isDrag.dy + (bBox.y + bBox.height / 2);
|
||||
/* prevent shapes from being dragged out of the canvas */
|
||||
var clientX = e.clientX - (newX < 20 ? newX - 20 : newX > selfRef.width - 20 ? newX - selfRef.width + 20 : 0);
|
||||
var clientY = e.clientY - (newY < 20 ? newY - 20 : newY > selfRef.height - 20 ? newY - selfRef.height + 20 : 0);
|
||||
selfRef.isDrag.set.translate(clientX - Math.round(selfRef.isDrag.dx), clientY - Math.round(selfRef.isDrag.dy));
|
||||
// console.log(clientX - Math.round(selfRef.isDrag.dx), clientY - Math.round(selfRef.isDrag.dy));
|
||||
for (var i in selfRef.graph.edges) {
|
||||
selfRef.graph.edges[i].connection && selfRef.graph.edges[i].connection.draw();
|
||||
}
|
||||
//selfRef.r.safari();
|
||||
selfRef.isDrag.dx = clientX;
|
||||
selfRef.isDrag.dy = clientY;
|
||||
}
|
||||
};
|
||||
d.onmouseup = function () {
|
||||
selfRef.isDrag && selfRef.isDrag.set.animate({"fill-opacity": .6}, 500);
|
||||
selfRef.isDrag = false;
|
||||
};
|
||||
this.draw();
|
||||
};
|
||||
Graph.Renderer.Raphael.prototype = {
|
||||
translate: function(point) {
|
||||
return [
|
||||
(point[0] - this.graph.layoutMinX) * this.factorX + this.radius,
|
||||
(point[1] - this.graph.layoutMinY) * this.factorY + this.radius
|
||||
];
|
||||
},
|
||||
|
||||
rotate: function(point, length, angle) {
|
||||
var dx = length * Math.cos(angle);
|
||||
var dy = length * Math.sin(angle);
|
||||
return [point[0]+dx, point[1]+dy];
|
||||
},
|
||||
|
||||
draw: function() {
|
||||
this.factorX = (this.width - 2 * this.radius) / (this.graph.layoutMaxX - this.graph.layoutMinX);
|
||||
this.factorY = (this.height - 2 * this.radius) / (this.graph.layoutMaxY - this.graph.layoutMinY);
|
||||
for (i in this.graph.nodes) {
|
||||
this.drawNode(this.graph.nodes[i]);
|
||||
}
|
||||
for (var i = 0; i < this.graph.edges.length; i++) {
|
||||
this.drawEdge(this.graph.edges[i]);
|
||||
}
|
||||
},
|
||||
|
||||
drawNode: function(node) {
|
||||
var point = this.translate([node.layoutPosX, node.layoutPosY]);
|
||||
node.point = point;
|
||||
|
||||
/* if node has already been drawn, move the nodes */
|
||||
if(node.shape) {
|
||||
var oBBox = node.shape.getBBox();
|
||||
var opoint = { x: oBBox.x + oBBox.width / 2, y: oBBox.y + oBBox.height / 2};
|
||||
node.shape.translate(Math.round(point[0] - opoint.x), Math.round(point[1] - opoint.y));
|
||||
this.r.safari();
|
||||
return node;
|
||||
}/* else, draw new nodes */
|
||||
|
||||
var shape;
|
||||
|
||||
/* if a node renderer function is provided by the user, then use it
|
||||
or the default render function instead */
|
||||
if(!node.render) {
|
||||
node.render = function(r, node) {
|
||||
/* the default node drawing */
|
||||
var color = Raphael.getColor();
|
||||
var ellipse = r.ellipse(0, 0, 30, 20).attr({fill: color, stroke: color, "stroke-width": 2});
|
||||
/* set DOM node ID */
|
||||
ellipse.node.id = node.label || node.id;
|
||||
shape = r.set().
|
||||
push(ellipse).
|
||||
push(r.text(0, 30, node.label || node.id));
|
||||
return shape;
|
||||
}
|
||||
}
|
||||
/* or check for an ajax representation of the nodes */
|
||||
if(node.shapes) {
|
||||
// TODO ajax representation evaluation
|
||||
}
|
||||
|
||||
shape = node.render(this.r, node).hide();
|
||||
|
||||
shape.attr({"fill-opacity": .6});
|
||||
/* re-reference to the node an element belongs to, needed for dragging all elements of a node */
|
||||
shape.items.forEach(function(item){ item.set = shape; item.node.style.cursor = "move"; });
|
||||
shape.mousedown(this.dragger);
|
||||
|
||||
var box = shape.getBBox();
|
||||
shape.translate(Math.round(point[0]-(box.x+box.width/2)),Math.round(point[1]-(box.y+box.height/2)))
|
||||
//console.log(box,point);
|
||||
node.hidden || shape.show();
|
||||
node.shape = shape;
|
||||
},
|
||||
drawEdge: function(edge) {
|
||||
/* if this edge already exists the other way around and is undirected */
|
||||
if(edge.backedge)
|
||||
return;
|
||||
if(edge.source.hidden || edge.target.hidden) {
|
||||
edge.connection && edge.connection.fg.hide() | edge.connection.bg && edge.connection.bg.hide();
|
||||
return;
|
||||
}
|
||||
/* if edge already has been drawn, only refresh the edge */
|
||||
if(!edge.connection) {
|
||||
edge.style && edge.style.callback && edge.style.callback(edge); // TODO move this somewhere else
|
||||
edge.connection = this.r.connection(edge.source.shape, edge.target.shape, edge.style);
|
||||
return;
|
||||
}
|
||||
//FIXME showing doesn't work well
|
||||
edge.connection.fg.show();
|
||||
edge.connection.bg && edge.connection.bg.show();
|
||||
edge.connection.draw();
|
||||
}
|
||||
};
|
||||
Graph.Layout = {};
|
||||
Graph.Layout.Spring = function(graph) {
|
||||
this.graph = graph;
|
||||
this.iterations = 500;
|
||||
this.maxRepulsiveForceDistance = 6;
|
||||
this.k = 2;
|
||||
this.c = 0.01;
|
||||
this.maxVertexMovement = 0.5;
|
||||
this.layout();
|
||||
};
|
||||
Graph.Layout.Spring.prototype = {
|
||||
layout: function() {
|
||||
this.layoutPrepare();
|
||||
for (var i = 0; i < this.iterations; i++) {
|
||||
this.layoutIteration();
|
||||
}
|
||||
this.layoutCalcBounds();
|
||||
},
|
||||
|
||||
layoutPrepare: function() {
|
||||
for (i in this.graph.nodes) {
|
||||
var node = this.graph.nodes[i];
|
||||
node.layoutPosX = 0;
|
||||
node.layoutPosY = 0;
|
||||
node.layoutForceX = 0;
|
||||
node.layoutForceY = 0;
|
||||
}
|
||||
|
||||
},
|
||||
|
||||
layoutCalcBounds: function() {
|
||||
var minx = Infinity, maxx = -Infinity, miny = Infinity, maxy = -Infinity;
|
||||
|
||||
for (i in this.graph.nodes) {
|
||||
var x = this.graph.nodes[i].layoutPosX;
|
||||
var y = this.graph.nodes[i].layoutPosY;
|
||||
|
||||
if(x > maxx) maxx = x;
|
||||
if(x < minx) minx = x;
|
||||
if(y > maxy) maxy = y;
|
||||
if(y < miny) miny = y;
|
||||
}
|
||||
|
||||
this.graph.layoutMinX = minx;
|
||||
this.graph.layoutMaxX = maxx;
|
||||
this.graph.layoutMinY = miny;
|
||||
this.graph.layoutMaxY = maxy;
|
||||
},
|
||||
|
||||
layoutIteration: function() {
|
||||
// Forces on nodes due to node-node repulsions
|
||||
|
||||
var prev = new Array();
|
||||
for(var c in this.graph.nodes) {
|
||||
var node1 = this.graph.nodes[c];
|
||||
for (var d in prev) {
|
||||
var node2 = this.graph.nodes[prev[d]];
|
||||
this.layoutRepulsive(node1, node2);
|
||||
|
||||
}
|
||||
prev.push(c);
|
||||
}
|
||||
|
||||
// Forces on nodes due to edge attractions
|
||||
for (var i = 0; i < this.graph.edges.length; i++) {
|
||||
var edge = this.graph.edges[i];
|
||||
this.layoutAttractive(edge);
|
||||
}
|
||||
|
||||
// Move by the given force
|
||||
for (i in this.graph.nodes) {
|
||||
var node = this.graph.nodes[i];
|
||||
var xmove = this.c * node.layoutForceX;
|
||||
var ymove = this.c * node.layoutForceY;
|
||||
|
||||
var max = this.maxVertexMovement;
|
||||
if(xmove > max) xmove = max;
|
||||
if(xmove < -max) xmove = -max;
|
||||
if(ymove > max) ymove = max;
|
||||
if(ymove < -max) ymove = -max;
|
||||
|
||||
node.layoutPosX += xmove;
|
||||
node.layoutPosY += ymove;
|
||||
node.layoutForceX = 0;
|
||||
node.layoutForceY = 0;
|
||||
}
|
||||
},
|
||||
|
||||
layoutRepulsive: function(node1, node2) {
|
||||
if (typeof node1 == 'undefined' || typeof node2 == 'undefined')
|
||||
return;
|
||||
var dx = node2.layoutPosX - node1.layoutPosX;
|
||||
var dy = node2.layoutPosY - node1.layoutPosY;
|
||||
var d2 = dx * dx + dy * dy;
|
||||
if(d2 < 0.01) {
|
||||
dx = 0.1 * Math.random() + 0.1;
|
||||
dy = 0.1 * Math.random() + 0.1;
|
||||
var d2 = dx * dx + dy * dy;
|
||||
}
|
||||
var d = Math.sqrt(d2);
|
||||
if(d < this.maxRepulsiveForceDistance) {
|
||||
var repulsiveForce = this.k * this.k / d;
|
||||
node2.layoutForceX += repulsiveForce * dx / d;
|
||||
node2.layoutForceY += repulsiveForce * dy / d;
|
||||
node1.layoutForceX -= repulsiveForce * dx / d;
|
||||
node1.layoutForceY -= repulsiveForce * dy / d;
|
||||
}
|
||||
},
|
||||
|
||||
layoutAttractive: function(edge) {
|
||||
var node1 = edge.source;
|
||||
var node2 = edge.target;
|
||||
|
||||
var dx = node2.layoutPosX - node1.layoutPosX;
|
||||
var dy = node2.layoutPosY - node1.layoutPosY;
|
||||
var d2 = dx * dx + dy * dy;
|
||||
if(d2 < 0.01) {
|
||||
dx = 0.1 * Math.random() + 0.1;
|
||||
dy = 0.1 * Math.random() + 0.1;
|
||||
var d2 = dx * dx + dy * dy;
|
||||
}
|
||||
var d = Math.sqrt(d2);
|
||||
if(d > this.maxRepulsiveForceDistance) {
|
||||
d = this.maxRepulsiveForceDistance;
|
||||
d2 = d * d;
|
||||
}
|
||||
var attractiveForce = (d2 - this.k * this.k) / this.k;
|
||||
if(edge.attraction == undefined) edge.attraction = 1;
|
||||
attractiveForce *= Math.log(edge.attraction) * 0.5 + 1;
|
||||
|
||||
node2.layoutForceX -= attractiveForce * dx / d;
|
||||
node2.layoutForceY -= attractiveForce * dy / d;
|
||||
node1.layoutForceX += attractiveForce * dx / d;
|
||||
node1.layoutForceY += attractiveForce * dy / d;
|
||||
}
|
||||
};
|
||||
|
||||
Graph.Layout.Ordered = function(graph, order) {
|
||||
this.graph = graph;
|
||||
this.order = order;
|
||||
this.layout();
|
||||
};
|
||||
Graph.Layout.Ordered.prototype = {
|
||||
layout: function() {
|
||||
this.layoutPrepare();
|
||||
this.layoutCalcBounds();
|
||||
},
|
||||
|
||||
layoutPrepare: function(order) {
|
||||
for (i in this.graph.nodes) {
|
||||
var node = this.graph.nodes[i];
|
||||
node.layoutPosX = 0;
|
||||
node.layoutPosY = 0;
|
||||
}
|
||||
var counter = 0;
|
||||
for (i in this.order) {
|
||||
var node = this.order[i];
|
||||
node.layoutPosX = counter;
|
||||
node.layoutPosY = Math.random();
|
||||
counter++;
|
||||
}
|
||||
},
|
||||
|
||||
layoutCalcBounds: function() {
|
||||
var minx = Infinity, maxx = -Infinity, miny = Infinity, maxy = -Infinity;
|
||||
|
||||
for (i in this.graph.nodes) {
|
||||
var x = this.graph.nodes[i].layoutPosX;
|
||||
var y = this.graph.nodes[i].layoutPosY;
|
||||
|
||||
if(x > maxx) maxx = x;
|
||||
if(x < minx) minx = x;
|
||||
if(y > maxy) maxy = y;
|
||||
if(y < miny) miny = y;
|
||||
}
|
||||
|
||||
this.graph.layoutMinX = minx;
|
||||
this.graph.layoutMaxX = maxx;
|
||||
|
||||
this.graph.layoutMinY = miny;
|
||||
this.graph.layoutMaxY = maxy;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* usefull JavaScript extensions,
|
||||
*/
|
||||
|
||||
function log(a) {console.log&&console.log(a);}
|
||||
|
||||
/*
|
||||
* Raphael Tooltip Plugin
|
||||
* - attaches an element as a tooltip to another element
|
||||
*
|
||||
* Usage example, adding a rectangle as a tooltip to a circle:
|
||||
*
|
||||
* paper.circle(100,100,10).tooltip(paper.rect(0,0,20,30));
|
||||
*
|
||||
* If you want to use more shapes, you'll have to put them into a set.
|
||||
*
|
||||
*/
|
||||
Raphael.el.tooltip = function (tp) {
|
||||
this.tp = tp;
|
||||
this.tp.o = {x: 0, y: 0};
|
||||
this.tp.hide();
|
||||
this.hover(
|
||||
function(event){
|
||||
this.mousemove(function(event){
|
||||
this.tp.translate(event.clientX -
|
||||
this.tp.o.x,event.clientY - this.tp.o.y);
|
||||
this.tp.o = {x: event.clientX, y: event.clientY};
|
||||
});
|
||||
this.tp.show().toFront();
|
||||
},
|
||||
function(event){
|
||||
this.tp.hide();
|
||||
this.unmousemove();
|
||||
});
|
||||
return this;
|
||||
};
|
||||
|
||||
/* For IE */
|
||||
if (!Array.prototype.forEach)
|
||||
{
|
||||
Array.prototype.forEach = function(fun /*, thisp*/)
|
||||
{
|
||||
var len = this.length;
|
||||
if (typeof fun != "function")
|
||||
throw new TypeError();
|
||||
|
||||
var thisp = arguments[1];
|
||||
for (var i = 0; i < len; i++)
|
||||
{
|
||||
if (i in this)
|
||||
fun.call(thisp, this[i], i, this);
|
||||
}
|
||||
};
|
||||
}
|
7
styles/bootstrap/dracula/raphael-min.js
vendored
Normal file
7
styles/bootstrap/dracula/raphael-min.js
vendored
Normal file
File diff suppressed because one or more lines are too long
266
styles/bootstrap/dracula/seedrandom.js
Normal file
266
styles/bootstrap/dracula/seedrandom.js
Normal file
|
@ -0,0 +1,266 @@
|
|||
// seedrandom.js
|
||||
// Author: David Bau 3/11/2010
|
||||
//
|
||||
// Defines a method Math.seedrandom() that, when called, substitutes
|
||||
// an explicitly seeded RC4-based algorithm for Math.random(). Also
|
||||
// supports automatic seeding from local or network sources of entropy.
|
||||
//
|
||||
// Usage:
|
||||
//
|
||||
// <script src=http://davidbau.com/encode/seedrandom-min.js></script>
|
||||
//
|
||||
// Math.seedrandom('yipee'); Sets Math.random to a function that is
|
||||
// initialized using the given explicit seed.
|
||||
//
|
||||
// Math.seedrandom(); Sets Math.random to a function that is
|
||||
// seeded using the current time, dom state,
|
||||
// and other accumulated local entropy.
|
||||
// The generated seed string is returned.
|
||||
//
|
||||
// Math.seedrandom('yowza', true);
|
||||
// Seeds using the given explicit seed mixed
|
||||
// together with accumulated entropy.
|
||||
//
|
||||
// <script src="http://bit.ly/srandom-512"></script>
|
||||
// Seeds using physical random bits downloaded
|
||||
// from random.org.
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// Math.seedrandom("hello"); // Use "hello" as the seed.
|
||||
// document.write(Math.random()); // Always 0.5463663768140734
|
||||
// document.write(Math.random()); // Always 0.43973793770592234
|
||||
// var rng1 = Math.random; // Remember the current prng.
|
||||
//
|
||||
// var autoseed = Math.seedrandom(); // New prng with an automatic seed.
|
||||
// document.write(Math.random()); // Pretty much unpredictable.
|
||||
//
|
||||
// Math.random = rng1; // Continue "hello" prng sequence.
|
||||
// document.write(Math.random()); // Always 0.554769432473455
|
||||
//
|
||||
// Math.seedrandom(autoseed); // Restart at the previous seed.
|
||||
// document.write(Math.random()); // Repeat the 'unpredictable' value.
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// Each time seedrandom('arg') is called, entropy from the passed seed
|
||||
// is accumulated in a pool to help generate future seeds for the
|
||||
// zero-argument form of Math.seedrandom, so entropy can be injected over
|
||||
// time by calling seedrandom with explicit data repeatedly.
|
||||
//
|
||||
// On speed - This javascript implementation of Math.random() is about
|
||||
// 3-10x slower than the built-in Math.random() because it is not native
|
||||
// code, but this is typically fast enough anyway. Seeding is more expensive,
|
||||
// especially if you use auto-seeding. Some details (timings on Chrome 4):
|
||||
//
|
||||
// Our Math.random() - avg less than 0.002 milliseconds per call
|
||||
// seedrandom('explicit') - avg less than 0.5 milliseconds per call
|
||||
// seedrandom('explicit', true) - avg less than 2 milliseconds per call
|
||||
// seedrandom() - avg about 38 milliseconds per call
|
||||
//
|
||||
// LICENSE (BSD):
|
||||
//
|
||||
// Copyright 2010 David Bau, all rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are met:
|
||||
//
|
||||
// 1. Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
//
|
||||
// 2. Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
//
|
||||
// 3. Neither the name of this module nor the names of its contributors may
|
||||
// be used to endorse or promote products derived from this software
|
||||
// without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
/**
|
||||
* All code is in an anonymous closure to keep the global namespace clean.
|
||||
*
|
||||
* @param {number=} overflow
|
||||
* @param {number=} startdenom
|
||||
*/
|
||||
(function (pool, math, width, chunks, significance, overflow, startdenom) {
|
||||
|
||||
|
||||
//
|
||||
// seedrandom()
|
||||
// This is the seedrandom function described above.
|
||||
//
|
||||
math['seedrandom'] = function seedrandom(seed, use_entropy) {
|
||||
var key = [];
|
||||
var arc4;
|
||||
|
||||
// Flatten the seed string or build one from local entropy if needed.
|
||||
seed = mixkey(flatten(
|
||||
use_entropy ? [seed, pool] :
|
||||
arguments.length ? seed :
|
||||
[new Date().getTime(), pool, window], 3), key);
|
||||
|
||||
// Use the seed to initialize an ARC4 generator.
|
||||
arc4 = new ARC4(key);
|
||||
|
||||
// Mix the randomness into accumulated entropy.
|
||||
mixkey(arc4.S, pool);
|
||||
|
||||
// Override Math.random
|
||||
|
||||
// This function returns a random double in [0, 1) that contains
|
||||
// randomness in every bit of the mantissa of the IEEE 754 value.
|
||||
|
||||
math['random'] = function random() { // Closure to return a random double:
|
||||
var n = arc4.g(chunks); // Start with a numerator n < 2 ^ 48
|
||||
var d = startdenom; // and denominator d = 2 ^ 48.
|
||||
var x = 0; // and no 'extra last byte'.
|
||||
while (n < significance) { // Fill up all significant digits by
|
||||
n = (n + x) * width; // shifting numerator and
|
||||
d *= width; // denominator and generating a
|
||||
x = arc4.g(1); // new least-significant-byte.
|
||||
}
|
||||
while (n >= overflow) { // To avoid rounding up, before adding
|
||||
n /= 2; // last byte, shift everything
|
||||
d /= 2; // right using integer math until
|
||||
x >>>= 1; // we have exactly the desired bits.
|
||||
}
|
||||
return (n + x) / d; // Form the number within [0, 1).
|
||||
};
|
||||
|
||||
// Return the seed that was used
|
||||
return seed;
|
||||
};
|
||||
|
||||
//
|
||||
// ARC4
|
||||
//
|
||||
// An ARC4 implementation. The constructor takes a key in the form of
|
||||
// an array of at most (width) integers that should be 0 <= x < (width).
|
||||
//
|
||||
// The g(count) method returns a pseudorandom integer that concatenates
|
||||
// the next (count) outputs from ARC4. Its return value is a number x
|
||||
// that is in the range 0 <= x < (width ^ count).
|
||||
//
|
||||
/** @constructor */
|
||||
function ARC4(key) {
|
||||
var t, u, me = this, keylen = key.length;
|
||||
var i = 0, j = me.i = me.j = me.m = 0;
|
||||
me.S = [];
|
||||
me.c = [];
|
||||
|
||||
// The empty key [] is treated as [0].
|
||||
if (!keylen) { key = [keylen++]; }
|
||||
|
||||
// Set up S using the standard key scheduling algorithm.
|
||||
while (i < width) { me.S[i] = i++; }
|
||||
for (i = 0; i < width; i++) {
|
||||
t = me.S[i];
|
||||
j = lowbits(j + t + key[i % keylen]);
|
||||
u = me.S[j];
|
||||
me.S[i] = u;
|
||||
me.S[j] = t;
|
||||
}
|
||||
|
||||
// The "g" method returns the next (count) outputs as one number.
|
||||
me.g = function getnext(count) {
|
||||
var s = me.S;
|
||||
var i = lowbits(me.i + 1); var t = s[i];
|
||||
var j = lowbits(me.j + t); var u = s[j];
|
||||
s[i] = u;
|
||||
s[j] = t;
|
||||
var r = s[lowbits(t + u)];
|
||||
while (--count) {
|
||||
i = lowbits(i + 1); t = s[i];
|
||||
j = lowbits(j + t); u = s[j];
|
||||
s[i] = u;
|
||||
s[j] = t;
|
||||
r = r * width + s[lowbits(t + u)];
|
||||
}
|
||||
me.i = i;
|
||||
me.j = j;
|
||||
return r;
|
||||
};
|
||||
// For robust unpredictability discard an initial batch of values.
|
||||
// See http://www.rsa.com/rsalabs/node.asp?id=2009
|
||||
me.g(width);
|
||||
}
|
||||
|
||||
//
|
||||
// flatten()
|
||||
// Converts an object tree to nested arrays of strings.
|
||||
//
|
||||
/** @param {Object=} result
|
||||
* @param {string=} prop */
|
||||
function flatten(obj, depth, result, prop) {
|
||||
result = [];
|
||||
if (depth && typeof(obj) == 'object') {
|
||||
for (prop in obj) {
|
||||
if (prop.indexOf('S') < 5) { // Avoid FF3 bug (local/sessionStorage)
|
||||
try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}
|
||||
}
|
||||
}
|
||||
}
|
||||
return result.length ? result : '' + obj;
|
||||
}
|
||||
|
||||
//
|
||||
// mixkey()
|
||||
// Mixes a string seed into a key that is an array of integers, and
|
||||
// returns a shortened string seed that is equivalent to the result key.
|
||||
//
|
||||
/** @param {number=} smear
|
||||
* @param {number=} j */
|
||||
function mixkey(seed, key, smear, j) {
|
||||
seed += ''; // Ensure the seed is a string
|
||||
smear = 0;
|
||||
for (j = 0; j < seed.length; j++) {
|
||||
key[lowbits(j)] =
|
||||
lowbits((smear ^= key[lowbits(j)] * 19) + seed.charCodeAt(j));
|
||||
}
|
||||
seed = '';
|
||||
for (j in key) { seed += String.fromCharCode(key[j]); }
|
||||
return seed;
|
||||
}
|
||||
|
||||
//
|
||||
// lowbits()
|
||||
// A quick "n mod width" for width a power of 2.
|
||||
//
|
||||
function lowbits(n) { return n & (width - 1); }
|
||||
|
||||
//
|
||||
// The following constants are related to IEEE 754 limits.
|
||||
//
|
||||
startdenom = math.pow(width, chunks);
|
||||
significance = math.pow(2, significance);
|
||||
overflow = significance * 2;
|
||||
|
||||
//
|
||||
// When seedrandom.js is loaded, we immediately mix a few bits
|
||||
// from the built-in RNG into the entropy pool. Because we do
|
||||
// not want to intefere with determinstic PRNG state later,
|
||||
// seedrandom will not call math.random on its own again after
|
||||
// initialization.
|
||||
//
|
||||
mixkey(math.random(), pool);
|
||||
|
||||
// End anonymous scope, and pass initial values.
|
||||
})(
|
||||
[], // pool: entropy pool starts empty
|
||||
Math, // math: package containing random, pow, and seedrandom
|
||||
256, // width: each RC4 output is 0 <= x < 256
|
||||
6, // chunks: at least six RC4 outputs for each double
|
||||
52 // significance: there are 52 significant digits in a double
|
||||
);
|
Loading…
Reference in New Issue
Block a user