Add more checks to enhance app heap's security (#428)

This commit is contained in:
Wenyong Huang 2020-10-22 18:52:33 +08:00 committed by GitHub
parent c515fb1b75
commit 91b9458ebd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 431 additions and 205 deletions

View File

@ -171,8 +171,10 @@ memories_deinstantiate(AOTModuleInstance *module_inst)
continue;
}
#endif
if (memory_inst->heap_handle.ptr)
if (memory_inst->heap_handle.ptr) {
mem_allocator_destroy(memory_inst->heap_handle.ptr);
wasm_runtime_free(memory_inst->heap_handle.ptr);
}
if (memory_inst->heap_data.ptr) {
#ifndef OS_ENABLE_HW_BOUND_CHECK
@ -359,13 +361,22 @@ memory_instantiate(AOTModuleInstance *module_inst, AOTModule *module,
memory_inst->heap_data.ptr = p + heap_offset;
memory_inst->heap_data_end.ptr = p + heap_offset + heap_size;
if (heap_size > 0) {
if (!(heap_handle = mem_allocator_create(memory_inst->heap_data.ptr,
heap_size))) {
set_error_buf(error_buf, error_buf_size,
"init app heap failed");
uint32 heap_struct_size = mem_allocator_get_heap_struct_size();
if (!(heap_handle = runtime_malloc((uint64)heap_struct_size,
error_buf, error_buf_size))) {
goto fail1;
}
memory_inst->heap_handle.ptr = heap_handle;
if (!mem_allocator_create_with_struct_and_pool
(heap_handle, heap_struct_size,
memory_inst->heap_data.ptr, heap_size)) {
set_error_buf(error_buf, error_buf_size,
"init app heap failed");
goto fail2;
}
}
if (total_size > 0) {
@ -390,7 +401,7 @@ memory_instantiate(AOTModuleInstance *module_inst, AOTModule *module,
(WASMMemoryInstanceCommon *)memory_inst)) {
set_error_buf(error_buf, error_buf_size,
"allocate memory failed");
goto fail2;
goto fail3;
}
}
#endif
@ -398,12 +409,13 @@ memory_instantiate(AOTModuleInstance *module_inst, AOTModule *module,
return memory_inst;
#if WASM_ENABLE_SHARED_MEMORY != 0
fail2:
if (heap_size > 0) {
fail3:
if (heap_size > 0)
mem_allocator_destroy(memory_inst->heap_handle.ptr);
memory_inst->heap_handle.ptr = NULL;
}
#endif
fail2:
if (heap_size > 0)
wasm_runtime_free(memory_inst->heap_handle.ptr);
fail1:
#ifndef OS_ENABLE_HW_BOUND_CHECK
wasm_runtime_free(memory_inst->memory_data.ptr);
@ -1474,7 +1486,6 @@ aot_enlarge_memory(AOTModuleInstance *module_inst, uint32 inc_page_count)
uint8 *memory_data_old = (uint8 *)memory_inst->memory_data.ptr;
uint8 *heap_data_old = (uint8 *)memory_inst->heap_data.ptr;
uint8 *memory_data, *heap_data;
void *heap_handle_old = memory_inst->heap_handle.ptr;
if (inc_page_count <= 0)
/* No need to enlarge memory */
@ -1498,18 +1509,9 @@ aot_enlarge_memory(AOTModuleInstance *module_inst, uint32 inc_page_count)
}
#endif
if (heap_size > 0) {
/* Destroy heap's lock firstly, if its memory is re-allocated,
we cannot access its lock again. */
mem_allocator_destroy_lock(memory_inst->heap_handle.ptr);
}
if (!(memory_data = wasm_runtime_realloc(memory_data_old,
(uint32)total_size))) {
if (!(memory_data = wasm_runtime_malloc((uint32)total_size))) {
if (heap_size > 0) {
/* Restore heap's lock if memory re-alloc failed */
mem_allocator_reinit_lock(memory_inst->heap_handle.ptr);
}
return false;
}
bh_memcpy_s(memory_data, (uint32)total_size,
@ -1526,10 +1528,10 @@ aot_enlarge_memory(AOTModuleInstance *module_inst, uint32 inc_page_count)
memory_inst->memory_data_end.ptr = memory_data + total_size;
if (heap_size > 0) {
memory_inst->heap_handle.ptr = (uint8 *)heap_handle_old
+ (memory_data - memory_data_old);
if (mem_allocator_migrate(memory_inst->heap_handle.ptr,
heap_handle_old) != 0) {
(char*)heap_data_old
+ (memory_data - memory_data_old),
heap_size)) {
return false;
}
}

View File

@ -2138,8 +2138,6 @@ wasm_application_execute_main(WASMModuleInstanceCommon *module_inst,
return ret;
}
#if WASM_ENABLE_MULTI_MODULE != 0
static WASMModuleInstance *
get_sub_module_inst(const WASMModuleInstance *parent_module_inst,

View File

@ -107,6 +107,7 @@ memories_deinstantiate(WASMModuleInstance *module_inst,
#endif
if (memories[i]->heap_handle) {
mem_allocator_destroy(memories[i]->heap_handle);
wasm_runtime_free(memories[i]->heap_handle);
memories[i]->heap_handle = NULL;
}
wasm_runtime_free(memories[i]->memory_data);
@ -262,17 +263,25 @@ memory_instantiate(WASMModuleInstance *module_inst,
memory->memory_data_end = memory->memory_data + (uint32)memory_data_size;
/* Initialize heap */
if (heap_size > 0
&& !(memory->heap_handle =
mem_allocator_create(memory->heap_data, heap_size))) {
set_error_buf(error_buf, error_buf_size, "init app heap failed");
goto fail2;
if (heap_size > 0) {
uint32 heap_struct_size = mem_allocator_get_heap_struct_size();
if (!(memory->heap_handle = runtime_malloc((uint64)heap_struct_size,
error_buf, error_buf_size))) {
goto fail2;
}
if (!mem_allocator_create_with_struct_and_pool
(memory->heap_handle, heap_struct_size,
memory->heap_data, heap_size)) {
set_error_buf(error_buf, error_buf_size, "init app heap failed");
goto fail3;
}
}
#if WASM_ENABLE_SHARED_MEMORY != 0
if (0 != os_mutex_init(&memory->mem_lock)) {
set_error_buf(error_buf, error_buf_size, "init mutex failed");
goto fail3;
goto fail4;
}
if (is_shared_memory) {
memory->is_shared = true;
@ -281,18 +290,21 @@ memory_instantiate(WASMModuleInstance *module_inst,
(WASMMemoryInstanceCommon *)memory)) {
set_error_buf(error_buf, error_buf_size,
"allocate memory failed");
goto fail4;
goto fail5;
}
}
#endif
return memory;
#if WASM_ENABLE_SHARED_MEMORY != 0
fail4:
fail5:
os_mutex_destroy(&memory->mem_lock);
fail3:
fail4:
if (heap_size > 0)
mem_allocator_destroy(memory->heap_handle);
#endif
fail3:
if (heap_size > 0)
wasm_runtime_free(memory->heap_handle);
fail2:
wasm_runtime_free(memory->memory_data);
fail1:
@ -1796,7 +1808,6 @@ wasm_enlarge_memory(WASMModuleInstance *module, uint32 inc_page_count)
uint32 total_size_old = memory->memory_data_end - memory_data;
uint32 total_page_count = inc_page_count + memory->cur_page_count;
uint64 total_size = memory->num_bytes_per_page * (uint64)total_page_count;
void *heap_handle_old = memory->heap_handle;
uint8 *heap_data_old = memory->heap_data;
if (inc_page_count <= 0)
@ -1821,17 +1832,8 @@ wasm_enlarge_memory(WASMModuleInstance *module, uint32 inc_page_count)
}
#endif
if (heap_size > 0) {
/* Destroy heap's lock firstly, if its memory is re-allocated,
we cannot access its lock again. */
mem_allocator_destroy_lock(memory->heap_handle);
}
if (!(new_memory_data = wasm_runtime_realloc(memory_data, (uint32)total_size))) {
if (!(new_memory_data = wasm_runtime_malloc((uint32)total_size))) {
if (heap_size > 0) {
/* Restore heap's lock if memory re-alloc failed */
mem_allocator_reinit_lock(memory->heap_handle);
}
return false;
}
bh_memcpy_s(new_memory_data, (uint32)total_size,
@ -1843,10 +1845,10 @@ wasm_enlarge_memory(WASMModuleInstance *module, uint32 inc_page_count)
0, (uint32)total_size - total_size_old);
if (heap_size > 0) {
memory->heap_handle = (uint8 *)heap_handle_old +
(new_memory_data - memory_data);
if (mem_allocator_migrate(memory->heap_handle,
heap_handle_old) != 0) {
(char *)heap_data_old
+ (new_memory_data - memory_data),
heap_size) != 0) {
return false;
}
}

View File

@ -6,12 +6,14 @@
#include "ems_gc_internal.h"
static int
hmu_is_in_heap(gc_heap_t* heap, hmu_t* hmu)
static inline bool
hmu_is_in_heap(void *hmu,
gc_uint8 *heap_base_addr,
gc_uint8 *heap_end_addr)
{
return heap && hmu
&& (gc_uint8*) hmu >= heap->base_addr
&& (gc_uint8*) hmu < heap->base_addr + heap->current_size;
gc_uint8 *addr = (gc_uint8 *)hmu;
return (addr >= heap_base_addr && addr < heap_end_addr)
? true : false;
}
/**
@ -23,21 +25,35 @@ hmu_is_in_heap(gc_heap_t* heap, hmu_t* hmu)
* won't be touched. The tree will be re-organized so that the order
* conditions are still satisified.
*/
static void
remove_tree_node(hmu_tree_node_t *p)
static bool
remove_tree_node(gc_heap_t *heap, hmu_tree_node_t *p)
{
hmu_tree_node_t *q = NULL, **slot = NULL;
hmu_tree_node_t *q = NULL, **slot = NULL, *parent;
hmu_tree_node_t *root = &heap->kfc_tree_root;
gc_uint8 *base_addr = heap->base_addr;
gc_uint8 *end_addr = base_addr + heap->current_size;
bh_assert(p);
bh_assert(p->parent); /* @p can not be the ROOT node*/
parent = p->parent;
if (!parent || p == root /* p can not be the ROOT node */
|| !hmu_is_in_heap(p, base_addr, end_addr)
|| (parent != root
&& !hmu_is_in_heap(parent, base_addr, end_addr))) {
goto fail;
}
/* get the slot which holds pointer to node p*/
if (p == p->parent->right) {
slot = &p->parent->right;
} else {
bh_assert(p == p->parent->left); /* @p should be a child of its parent*/
}
else if (p == p->parent->left) {
/* p should be a child of its parent*/
slot = &p->parent->left;
}
else {
goto fail;
}
/**
* algorithms used to remove node p
@ -51,65 +67,110 @@ remove_tree_node(hmu_tree_node_t *p)
if (!p->left) {
/* move right child up*/
*slot = p->right;
if (p->right)
if (p->right) {
if (!hmu_is_in_heap(p->right, base_addr, end_addr)) {
goto fail;
}
p->right->parent = p->parent;
}
p->left = p->right = p->parent = NULL;
return;
return true;
}
if (!p->right) {
/* move left child up*/
*slot = p->left;
p->left->parent = p->parent; /* p->left can never be NULL.*/
if (!hmu_is_in_heap(p->left, base_addr, end_addr)) {
goto fail;
}
/* p->left can never be NULL unless it is corrupted. */
p->left->parent = p->parent;
p->left = p->right = p->parent = NULL;
return;
return true;
}
/* both left & right exist, find p's predecessor at first*/
q = p->left;
while (q->right)
if (!hmu_is_in_heap(q, base_addr, end_addr)) {
goto fail;
}
while (q->right) {
q = q->right;
if (!hmu_is_in_heap(q, base_addr, end_addr)) {
goto fail;
}
}
/* remove from the tree*/
remove_tree_node(q);
if (!remove_tree_node(heap, q))
return false;
*slot = q;
q->parent = p->parent;
q->left = p->left;
q->right = p->right;
if (q->left)
if (q->left) {
if (!hmu_is_in_heap(q->left, base_addr, end_addr)) {
goto fail;
}
q->left->parent = q;
if (q->right)
}
if (q->right) {
if (!hmu_is_in_heap(q->right, base_addr, end_addr)) {
goto fail;
}
q->right->parent = q;
}
p->left = p->right = p->parent = NULL;
return true;
fail:
heap->is_heap_corrupted = true;
return false;
}
static void
static bool
unlink_hmu(gc_heap_t *heap, hmu_t *hmu)
{
gc_uint8 *base_addr, *end_addr;
gc_size_t size;
bh_assert(gci_is_heap_valid(heap));
bh_assert(hmu && (gc_uint8*) hmu >= heap->base_addr
&& (gc_uint8*) hmu < heap->base_addr + heap->current_size);
bh_assert(hmu_get_ut(hmu) == HMU_FC);
if (hmu_get_ut(hmu) != HMU_FC) {
heap->is_heap_corrupted = true;
return false;
}
base_addr = heap->base_addr;
end_addr = base_addr + heap->current_size;
size = hmu_get_size(hmu);
if (HMU_IS_FC_NORMAL(size)) {
uint32 node_idx = size >> 3;
hmu_normal_node_t *node_prev = &heap->kfc_normal_list[node_idx];
hmu_normal_node_t *node =
get_hmu_normal_node_next(&heap->kfc_normal_list[node_idx]);
hmu_normal_node_t *node_prev = NULL, *node_next;
hmu_normal_node_t *node = heap->kfc_normal_list[node_idx].next;
while (node) {
if ((hmu_t*) node == hmu) {
set_hmu_normal_node_next(node_prev, get_hmu_normal_node_next(node));
if (!hmu_is_in_heap(node, base_addr, end_addr)) {
heap->is_heap_corrupted = true;
return false;
}
node_next = get_hmu_normal_node_next(node);
if ((hmu_t*)node == hmu) {
if (!node_prev) /* list head */
heap->kfc_normal_list[node_idx].next = node_next;
else
set_hmu_normal_node_next(node_prev, node_next);
break;
}
node_prev = node;
node = get_hmu_normal_node_next(node);
node = node_next;
}
if (!node) {
@ -117,8 +178,10 @@ unlink_hmu(gc_heap_t *heap, hmu_t *hmu)
}
}
else {
remove_tree_node((hmu_tree_node_t *) hmu);
if (!remove_tree_node(heap, (hmu_tree_node_t *)hmu))
return false;
}
return true;
}
static void
@ -140,37 +203,44 @@ hmu_set_free_size(hmu_t *hmu)
* @param size should be positive and multiple of 8
* hmu with size @size will be added into KFC as a new FC.
*/
void
bool
gci_add_fc(gc_heap_t *heap, hmu_t *hmu, gc_size_t size)
{
gc_uint8 *base_addr, *end_addr;
hmu_normal_node_t *np = NULL;
hmu_tree_node_t *root = NULL, *tp = NULL, *node = NULL;
uint32 node_idx;
bh_assert(gci_is_heap_valid(heap));
bh_assert(hmu && (gc_uint8*) hmu >= heap->base_addr
&& (gc_uint8*) hmu < heap->base_addr + heap->current_size);
bh_assert(hmu && (gc_uint8*)hmu >= heap->base_addr
&& (gc_uint8*)hmu < heap->base_addr + heap->current_size);
bh_assert(((gc_uint32)(uintptr_t)hmu_to_obj(hmu) & 7) == 0);
bh_assert(size > 0
&& ((gc_uint8*) hmu) + size <= heap->base_addr + heap->current_size);
&& ((gc_uint8*)hmu) + size <= heap->base_addr + heap->current_size);
bh_assert(!(size & 7));
base_addr = heap->base_addr;
end_addr = base_addr + heap->current_size;
hmu_set_ut(hmu, HMU_FC);
hmu_set_size(hmu, size);
hmu_set_free_size(hmu);
if (HMU_IS_FC_NORMAL(size)) {
np = (hmu_normal_node_t*) hmu;
np = (hmu_normal_node_t*)hmu;
if (!hmu_is_in_heap(np, base_addr, end_addr)) {
heap->is_heap_corrupted = true;
return false;
}
node_idx = size >> 3;
set_hmu_normal_node_next(np, get_hmu_normal_node_next
(&heap->kfc_normal_list[node_idx]));
set_hmu_normal_node_next(&heap->kfc_normal_list[node_idx], np);
return;
set_hmu_normal_node_next(np, heap->kfc_normal_list[node_idx].next);
heap->kfc_normal_list[node_idx].next = np;
return true;
}
/* big block*/
node = (hmu_tree_node_t*) hmu;
node = (hmu_tree_node_t*)hmu;
node->size = size;
node->left = node->right = node->parent = NULL;
@ -195,7 +265,12 @@ gci_add_fc(gc_heap_t *heap, hmu_t *hmu, gc_size_t size)
}
tp = tp->left;
}
if (!hmu_is_in_heap(tp, base_addr, end_addr)) {
heap->is_heap_corrupted = true;
return false;
}
}
return true;
}
/**
@ -212,7 +287,9 @@ gci_add_fc(gc_heap_t *heap, hmu_t *hmu, gc_size_t size)
static hmu_t *
alloc_hmu(gc_heap_t *heap, gc_size_t size)
{
hmu_normal_node_t *node = NULL, *p = NULL;
gc_uint8 *base_addr, *end_addr;
hmu_normal_list_t *normal_head = NULL;
hmu_normal_node_t *p = NULL;
uint32 node_idx = 0, init_node_idx = 0;
hmu_tree_node_t *root = NULL, *tp = NULL, *last_tp = NULL;
hmu_t *next, *rest;
@ -220,6 +297,9 @@ alloc_hmu(gc_heap_t *heap, gc_size_t size)
bh_assert(gci_is_heap_valid(heap));
bh_assert(size > 0 && !(size & 7));
base_addr = heap->base_addr;
end_addr = base_addr + heap->current_size;
if (size < GC_SMALLEST_SIZE)
size = GC_SMALLEST_SIZE;
@ -229,31 +309,40 @@ alloc_hmu(gc_heap_t *heap, gc_size_t size)
init_node_idx = (size >> 3);
for (node_idx = init_node_idx; node_idx < HMU_NORMAL_NODE_CNT;
node_idx++) {
node = heap->kfc_normal_list + node_idx;
if (get_hmu_normal_node_next(node))
normal_head = heap->kfc_normal_list + node_idx;
if (normal_head->next)
break;
node = NULL;
normal_head = NULL;
}
/* not found in normal list*/
if (node) {
/* found in normal list*/
if (normal_head) {
bh_assert(node_idx >= init_node_idx);
p = get_hmu_normal_node_next(node);
set_hmu_normal_node_next(node, get_hmu_normal_node_next(p));
bh_assert(((gc_int32)(uintptr_t)hmu_to_obj(p) & 7) == 0);
p = normal_head->next;
if (!hmu_is_in_heap(p, base_addr, end_addr)) {
heap->is_heap_corrupted = true;
return NULL;
}
normal_head->next = get_hmu_normal_node_next(p);
if (((gc_int32)(uintptr_t)hmu_to_obj(p) & 7) != 0) {
heap->is_heap_corrupted = true;
return NULL;
}
if ((gc_size_t)node_idx != (uint32)init_node_idx
/* with bigger size*/
&& ((gc_size_t)node_idx << 3) >= size + GC_SMALLEST_SIZE) {
rest = (hmu_t*) (((char *) p) + size);
gci_add_fc(heap, rest, (node_idx << 3) - size);
if (!gci_add_fc(heap, rest, (node_idx << 3) - size)) {
return NULL;
}
hmu_mark_pinuse(rest);
}
else {
size = node_idx << 3;
next = (hmu_t*) ((char*) p + size);
if (hmu_is_in_heap(heap, next))
if (hmu_is_in_heap(next, base_addr, end_addr))
hmu_mark_pinuse(next);
}
@ -275,6 +364,11 @@ alloc_hmu(gc_heap_t *heap, gc_size_t size)
bh_assert(root);
tp = root->right;
while (tp) {
if (!hmu_is_in_heap(tp, base_addr, end_addr)) {
heap->is_heap_corrupted = true;
return NULL;
}
if (tp->size < size) {
tp = tp->right;
continue;
@ -291,17 +385,19 @@ alloc_hmu(gc_heap_t *heap, gc_size_t size)
/* alloc in last_p*/
/* remove node last_p from tree*/
remove_tree_node(last_tp);
if (!remove_tree_node(heap, last_tp))
return NULL;
if (last_tp->size >= size + GC_SMALLEST_SIZE) {
rest = (hmu_t*) ((char*) last_tp + size);
gci_add_fc(heap, rest, last_tp->size - size);
rest = (hmu_t*)((char*)last_tp + size);
if (!gci_add_fc(heap, rest, last_tp->size - size))
return NULL;
hmu_mark_pinuse(rest);
}
else {
size = last_tp->size;
next = (hmu_t*) ((char*) last_tp + size);
if (hmu_is_in_heap(heap, next))
next = (hmu_t*)((char*)last_tp + size);
if (hmu_is_in_heap(next, base_addr, end_addr))
hmu_mark_pinuse(next);
}
@ -309,8 +405,8 @@ alloc_hmu(gc_heap_t *heap, gc_size_t size)
if ((heap->current_size - heap->total_free_size) > heap->highmark_size)
heap->highmark_size = heap->current_size - heap->total_free_size;
hmu_set_size((hmu_t* ) last_tp, size);
return (hmu_t*) last_tp;
hmu_set_size((hmu_t*)last_tp, size);
return (hmu_t*)last_tp;
}
return NULL;
@ -365,6 +461,11 @@ gc_alloc_vo_internal(void *vheap, gc_size_t size,
/* integer overflow */
return NULL;
if (heap->is_heap_corrupted) {
os_printf("[GC_ERROR]Heap is corrupted, allocate memory failed.\n");
return NULL;
}
os_mutex_lock(&heap->lock);
hmu = alloc_hmu_ex(heap, tot_size);
@ -404,6 +505,7 @@ gc_realloc_vo_internal(void *vheap, void *ptr, gc_size_t size,
gc_object_t ret = (gc_object_t) NULL, obj_old = (gc_object_t)ptr;
gc_size_t tot_size, tot_size_unaligned, tot_size_old = 0, tot_size_next;
gc_size_t obj_size, obj_size_old;
gc_uint8 *base_addr, *end_addr;
hmu_type_t ut;
/* hmu header + prefix + obj + suffix */
@ -414,6 +516,11 @@ gc_realloc_vo_internal(void *vheap, void *ptr, gc_size_t size,
/* integer overflow */
return NULL;
if (heap->is_heap_corrupted) {
os_printf("[GC_ERROR]Heap is corrupted, allocate memory failed.\n");
return NULL;
}
if (obj_old) {
hmu_old = obj_to_hmu(obj_old);
tot_size_old = hmu_get_size(hmu_old);
@ -422,17 +529,23 @@ gc_realloc_vo_internal(void *vheap, void *ptr, gc_size_t size,
return obj_old;
}
base_addr = heap->base_addr;
end_addr = base_addr + heap->current_size;
os_mutex_lock(&heap->lock);
if (hmu_old) {
hmu_next = (hmu_t*)((char *)hmu_old + tot_size_old);
if (hmu_is_in_heap(heap, hmu_next)) {
if (hmu_is_in_heap(hmu_next, base_addr, end_addr)) {
ut = hmu_get_ut(hmu_next);
tot_size_next = hmu_get_size(hmu_next);
if (ut == HMU_FC
&& tot_size <= tot_size_old + tot_size_next) {
/* current node and next node meets requirement */
unlink_hmu(heap, hmu_next);
if (!unlink_hmu(heap, hmu_next)) {
os_mutex_unlock(&heap->lock);
return NULL;
}
hmu_set_size(hmu_old, tot_size);
memset((char*)hmu_old + tot_size_old, 0, tot_size - tot_size_old);
#if BH_ENABLE_GC_VERIFY != 0
@ -441,7 +554,10 @@ gc_realloc_vo_internal(void *vheap, void *ptr, gc_size_t size,
if (tot_size < tot_size_old + tot_size_next) {
hmu_next = (hmu_t*)((char*)hmu_old + tot_size);
tot_size_next = tot_size_old + tot_size_next - tot_size;
gci_add_fc(heap, hmu_next, tot_size_next);
if (!gci_add_fc(heap, hmu_next, tot_size_next)) {
os_mutex_unlock(&heap->lock);
return NULL;
}
}
os_mutex_unlock(&heap->lock);
return obj_old;
@ -507,6 +623,7 @@ gc_free_vo_internal(void *vheap, gc_object_t obj,
#endif
{
gc_heap_t* heap = (gc_heap_t*) vheap;
gc_uint8 *base_addr, *end_addr;
hmu_t *hmu = NULL;
hmu_t *prev = NULL;
hmu_t *next = NULL;
@ -518,14 +635,21 @@ gc_free_vo_internal(void *vheap, gc_object_t obj,
return GC_SUCCESS;
}
if (heap->is_heap_corrupted) {
os_printf("[GC_ERROR]Heap is corrupted, free memory failed.\n");
return GC_ERROR;
}
hmu = obj_to_hmu(obj);
base_addr = heap->base_addr;
end_addr = base_addr + heap->current_size;
os_mutex_lock(&heap->lock);
if ((gc_uint8 *)hmu >= heap->base_addr
&& (gc_uint8 *)hmu < heap->base_addr + heap->current_size) {
if (hmu_is_in_heap(hmu, base_addr, end_addr)) {
#if BH_ENABLE_GC_VERIFY != 0
hmu_verify(hmu);
hmu_verify(heap, hmu);
#endif
ut = hmu_get_ut(hmu);
if (ut == HMU_VO) {
@ -544,25 +668,35 @@ gc_free_vo_internal(void *vheap, gc_object_t obj,
if (!hmu_get_pinuse(hmu)) {
prev = (hmu_t*) ((char*) hmu - *((int*) hmu - 1));
if (hmu_is_in_heap(heap, prev) && hmu_get_ut(prev) == HMU_FC) {
if (hmu_is_in_heap(prev, base_addr, end_addr)
&& hmu_get_ut(prev) == HMU_FC) {
size += hmu_get_size(prev);
hmu = prev;
unlink_hmu(heap, prev);
if (!unlink_hmu(heap, prev)) {
ret = GC_ERROR;
goto out;
}
}
}
next = (hmu_t*) ((char*) hmu + size);
if (hmu_is_in_heap(heap, next)) {
if (hmu_is_in_heap(next, base_addr, end_addr)) {
if (hmu_get_ut(next) == HMU_FC) {
size += hmu_get_size(next);
unlink_hmu(heap, next);
next = (hmu_t*) ((char*) hmu + size);
if (!unlink_hmu(heap, next)) {
ret = GC_ERROR;
goto out;
}
next = (hmu_t*)((char*) hmu + size);
}
}
gci_add_fc(heap, hmu, size);
if (!gci_add_fc(heap, hmu, size)) {
ret = GC_ERROR;
goto out;
}
if (hmu_is_in_heap(heap, next)) {
if (hmu_is_in_heap(next, base_addr, end_addr)) {
hmu_unmark_pinuse(next);
}
@ -620,7 +754,11 @@ gci_dump(gc_heap_t *heap)
else if (ut == HMU_FC)
inuse = 'F';
bh_assert(size > 0);
if (size == 0) {
os_printf("[GC_ERROR]Heap is corrupted, heap dump failed.\n");
heap->is_heap_corrupted = true;
return;
}
os_printf("#%d %08x %x %x %d %c %d\n",
i, (int32)((char*) cur - (char*) heap->base_addr),

View File

@ -51,7 +51,10 @@ typedef enum {
} GC_STAT_INDEX;
/**
* GC initialization from a buffer
* GC initialization from a buffer, which is separated into
* two parts: the beginning of the buffer is used to create
* the heap structure, and the left is used to create the
* actual pool data
*
* @param buf the buffer to be initialized to a heap
* @param buf_size the size of buffer
@ -61,6 +64,20 @@ typedef enum {
gc_handle_t
gc_init_with_pool(char *buf, gc_size_t buf_size);
/**
* GC initialization from heap struct buffer and pool buffer
*
* @param struct_buf the struct buffer to create the heap structure
* @param struct_buf_size the size of struct buffer
* @param pool_buf the pool buffer to create pool data
* @param pool_buf_size the size of poll buffer
*
* @return gc handle if success, NULL otherwise
*/
gc_handle_t
gc_init_with_struct_and_pool(char *struct_buf, gc_size_t struct_buf_size,
char *pool_buf, gc_size_t pool_buf_size);
/**
* Destroy heap which is initilized from a buffer
*
@ -73,25 +90,23 @@ int
gc_destroy_with_pool(gc_handle_t handle);
/**
* Migrate heap from one place to another place
*
* @param handle handle of the new heap
* @param handle_old handle of the old heap
*
* @return GC_SUCCESS if success, GC_ERROR otherwise
* Return heap struct size
*/
int
gc_migrate(gc_handle_t handle, gc_handle_t handle_old);
uint32
gc_get_heap_struct_size(void);
/**
* Re-initialize lock of heap
* Migrate heap from one pool buf to another pool buf
*
* @param handle the heap handle
* @param handle handle of the new heap
* @param pool_buf_new the new pool buffer
* @param pool_buf_size the size of new pool buffer
*
* @return GC_SUCCESS if success, GC_ERROR otherwise
*/
int
gc_reinit_lock(gc_handle_t handle);
gc_migrate(gc_handle_t handle,
char *pool_buf_new, gc_size_t pool_buf_size);
/**
* Destroy lock of heap

View File

@ -52,7 +52,7 @@ hmu_init_prefix_and_suffix(hmu_t *hmu, gc_size_t tot_size,
const char *file_name, int line_no);
void
hmu_verify(hmu_t *hmu);
hmu_verify(void *vheap, hmu_t *hmu);
#define SKIP_OBJ_PREFIX(p) ((void*)((gc_uint8*)(p) + OBJ_PREFIX_SIZE))
#define SKIP_OBJ_SUFFIX(p) ((void*)((gc_uint8*)(p) + OBJ_SUFFIX_SIZE))
@ -159,6 +159,10 @@ typedef struct hmu_normal_node {
gc_int32 next_offset;
} hmu_normal_node_t;
typedef struct hmu_normal_list {
hmu_normal_node_t *next;
} hmu_normal_list_t;
static inline hmu_normal_node_t *
get_hmu_normal_node_next(hmu_normal_node_t *node)
{
@ -197,11 +201,15 @@ typedef struct gc_heap_struct {
korp_mutex lock;
hmu_normal_node_t kfc_normal_list[HMU_NORMAL_NODE_CNT];
hmu_normal_list_t kfc_normal_list[HMU_NORMAL_NODE_CNT];
/* order in kfc_tree is: size[left] <= size[cur] < size[right]*/
hmu_tree_node_t kfc_tree_root;
/* whether heap is corrupted, e.g. the hmu nodes are modified
by user */
bool is_heap_corrupted;
gc_size_t init_size;
gc_size_t highmark_size;
gc_size_t total_free_size;
@ -211,7 +219,7 @@ typedef struct gc_heap_struct {
* MISC internal used APIs
*/
void
bool
gci_add_fc(gc_heap_t *heap, hmu_t *hmu, gc_size_t size);
int

View File

@ -45,8 +45,9 @@ hmu_init_prefix_and_suffix(hmu_t *hmu, gc_size_t tot_size,
}
void
hmu_verify(hmu_t *hmu)
hmu_verify(void *vheap, hmu_t *hmu)
{
gc_heap_t *heap = (gc_heap_t *)vheap;
gc_object_prefix_t *prefix = NULL;
gc_object_suffix_t *suffix = NULL;
gc_uint32 i = 0;
@ -62,32 +63,27 @@ hmu_verify(hmu_t *hmu)
size = prefix->size;
suffix = (gc_object_suffix_t *)((gc_uint8*)hmu + size - OBJ_SUFFIX_SIZE);
if(ut == HMU_VO || ut == HMU_JO)
{
if (ut == HMU_VO || ut == HMU_JO) {
/* check padding*/
for(i = 0;i < GC_OBJECT_PREFIX_PADDING_CNT;i++)
{
if(prefix->padding[i] != GC_OBJECT_PADDING_VALUE)
{
for (i = 0;i < GC_OBJECT_PREFIX_PADDING_CNT;i++) {
if (prefix->padding[i] != GC_OBJECT_PADDING_VALUE) {
is_padding_ok = 0;
break;
}
}
for(i = 0;i < GC_OBJECT_SUFFIX_PADDING_CNT;i++)
{
if(suffix->padding[i] != GC_OBJECT_PADDING_VALUE)
{
for (i = 0;i < GC_OBJECT_SUFFIX_PADDING_CNT;i++) {
if (suffix->padding[i] != GC_OBJECT_PADDING_VALUE) {
is_padding_ok = 0;
break;
}
}
if(!is_padding_ok)
{
os_printf("Invalid padding for object created at %s:%d",
(prefix->file_name ? prefix->file_name : ""), prefix->line_no);
if (!is_padding_ok) {
os_printf("Invalid padding for object created at %s:%d\n",
(prefix->file_name ? prefix->file_name : ""),
prefix->line_no);
heap->is_heap_corrupted = true;
}
bh_assert(is_padding_ok);
}
}

View File

@ -5,26 +5,11 @@
#include "ems_gc_internal.h"
gc_handle_t
gc_init_with_pool(char *buf, gc_size_t buf_size)
static gc_handle_t
gc_init_internal(gc_heap_t *heap, char *base_addr, gc_size_t heap_max_size)
{
char *buf_end = buf + buf_size;
char *buf_aligned = (char*)(((uintptr_t) buf + 7) & (uintptr_t)~7);
char *base_addr = buf_aligned + sizeof(gc_heap_t);
gc_heap_t *heap = (gc_heap_t*)buf_aligned;
gc_size_t heap_max_size;
hmu_normal_node_t *p = NULL;
hmu_tree_node_t *root = NULL, *q = NULL;
int i = 0, ret;
if (buf_size < APP_HEAP_SIZE_MIN) {
os_printf("[GC_ERROR]heap init buf size (%u) < %u\n",
buf_size, APP_HEAP_SIZE_MIN);
return NULL;
}
base_addr = (char*) (((uintptr_t) base_addr + 7) & (uintptr_t)~7) + GC_HEAD_PADDING;
heap_max_size = (uint32)(buf_end - base_addr) & (uint32)~7;
int ret;
memset(heap, 0, sizeof *heap);
memset(base_addr, 0, heap_max_size);
@ -43,14 +28,6 @@ gc_init_with_pool(char *buf, gc_size_t buf_size)
heap->total_free_size = heap->current_size;
heap->highmark_size = 0;
for (i = 0; i < HMU_NORMAL_NODE_CNT; i++) {
/* make normal node look like a FC*/
p = &heap->kfc_normal_list[i];
memset(p, 0, sizeof *p);
hmu_set_ut(&p->hmu_header, HMU_FC);
hmu_set_size(&p->hmu_header, sizeof *p);
}
root = &heap->kfc_tree_root;
memset(root, 0, sizeof *root);
root->size = sizeof *root;
@ -79,6 +56,63 @@ gc_init_with_pool(char *buf, gc_size_t buf_size)
return heap;
}
gc_handle_t
gc_init_with_pool(char *buf, gc_size_t buf_size)
{
char *buf_end = buf + buf_size;
char *buf_aligned = (char*)(((uintptr_t) buf + 7) & (uintptr_t)~7);
char *base_addr = buf_aligned + sizeof(gc_heap_t);
gc_heap_t *heap = (gc_heap_t*)buf_aligned;
gc_size_t heap_max_size;
if (buf_size < APP_HEAP_SIZE_MIN) {
os_printf("[GC_ERROR]heap init buf size (%u) < %u\n",
buf_size, APP_HEAP_SIZE_MIN);
return NULL;
}
base_addr = (char*) (((uintptr_t) base_addr + 7) & (uintptr_t)~7) + GC_HEAD_PADDING;
heap_max_size = (uint32)(buf_end - base_addr) & (uint32)~7;
return gc_init_internal(heap, base_addr, heap_max_size);
}
gc_handle_t
gc_init_with_struct_and_pool(char *struct_buf, gc_size_t struct_buf_size,
char *pool_buf, gc_size_t pool_buf_size)
{
gc_heap_t *heap = (gc_heap_t*)struct_buf;
char *base_addr = pool_buf + GC_HEAD_PADDING;
char *pool_buf_end = pool_buf + pool_buf_size;
gc_size_t heap_max_size;
if ((((uintptr_t)struct_buf) & 7) != 0) {
os_printf("[GC_ERROR]heap init struct buf not 8-byte aligned\n");
return NULL;
}
if (struct_buf_size < sizeof(gc_handle_t)) {
os_printf("[GC_ERROR]heap init struct buf size (%u) < %u\n",
struct_buf_size, sizeof(gc_handle_t));
return NULL;
}
if ((((uintptr_t)pool_buf) & 7) != 0) {
os_printf("[GC_ERROR]heap init pool buf not 8-byte aligned\n");
return NULL;
}
if (pool_buf_size < APP_HEAP_SIZE_MIN) {
os_printf("[GC_ERROR]heap init buf size (%u) < %u\n",
pool_buf_size, APP_HEAP_SIZE_MIN);
return NULL;
}
heap_max_size = (uint32)(pool_buf_end - base_addr) & (uint32)~7;
return gc_init_internal(heap, base_addr, heap_max_size);
}
int
gc_destroy_with_pool(gc_handle_t handle)
{
@ -86,7 +120,8 @@ gc_destroy_with_pool(gc_handle_t handle)
#if BH_ENABLE_GC_VERIFY != 0
hmu_t *cur = (hmu_t*)heap->base_addr;
hmu_t *end = (hmu_t*)((char*)heap->base_addr + heap->current_size);
if ((hmu_t*)((char *)cur + hmu_get_size(cur)) != end) {
if (!heap->is_heap_corrupted
&& (hmu_t*)((char *)cur + hmu_get_size(cur)) != end) {
os_printf("Memory leak detected:\n");
gci_dump(heap);
#if WASM_ENABLE_SPEC_TEST != 0
@ -100,6 +135,12 @@ gc_destroy_with_pool(gc_handle_t handle)
return GC_SUCCESS;
}
uint32
gc_get_heap_struct_size()
{
return sizeof(gc_heap_t);
}
static void
adjust_ptr(uint8 **p_ptr, intptr_t offset)
{
@ -108,21 +149,34 @@ adjust_ptr(uint8 **p_ptr, intptr_t offset)
}
int
gc_migrate(gc_handle_t handle, gc_handle_t handle_old)
gc_migrate(gc_handle_t handle,
char *pool_buf_new, gc_size_t pool_buf_size)
{
gc_heap_t *heap = (gc_heap_t *) handle;
intptr_t offset = (uint8*)handle - (uint8*)handle_old;
gc_heap_t *heap = (gc_heap_t *)handle;
char *base_addr_new = pool_buf_new + GC_HEAD_PADDING;
char *pool_buf_end = pool_buf_new + pool_buf_size;
intptr_t offset = (uint8*)base_addr_new - (uint8*)heap->base_addr;
hmu_t *cur = NULL, *end = NULL;
hmu_tree_node_t *tree_node;
gc_size_t size;
gc_size_t heap_max_size, size;
os_mutex_init(&heap->lock);
if ((((uintptr_t)pool_buf_new) & 7) != 0) {
os_printf("[GC_ERROR]heap migrate pool buf not 8-byte aligned\n");
return GC_ERROR;
}
heap_max_size = (uint32)(pool_buf_end - base_addr_new) & (uint32)~7;
if (pool_buf_end < base_addr_new
|| heap_max_size < heap->current_size) {
os_printf("[GC_ERROR]heap migrate invlaid pool buf size\n");
return GC_ERROR;
}
if (offset == 0)
return 0;
heap->heap_id = (gc_handle_t)heap;
heap->base_addr += offset;
heap->base_addr = (uint8*)base_addr_new;
adjust_ptr((uint8**)&heap->kfc_tree_root.left, offset);
adjust_ptr((uint8**)&heap->kfc_tree_root.right, offset);
adjust_ptr((uint8**)&heap->kfc_tree_root.parent, offset);
@ -138,7 +192,10 @@ gc_migrate(gc_handle_t handle, gc_handle_t handle_old)
tree_node = (hmu_tree_node_t *)cur;
adjust_ptr((uint8**)&tree_node->left, offset);
adjust_ptr((uint8**)&tree_node->right, offset);
adjust_ptr((uint8**)&tree_node->parent, offset);
if (tree_node->parent != &heap->kfc_tree_root)
/* The root node belongs to heap structure,
it is fixed part and isn't changed. */
adjust_ptr((uint8**)&tree_node->parent, offset);
}
cur = (hmu_t*)((char *)cur + size);
}
@ -147,13 +204,6 @@ gc_migrate(gc_handle_t handle, gc_handle_t handle_old)
return 0;
}
int
gc_reinit_lock(gc_handle_t handle)
{
gc_heap_t *heap = (gc_heap_t *) handle;
return os_mutex_init(&heap->lock);
}
void
gc_destroy_lock(gc_handle_t handle)
{
@ -170,9 +220,8 @@ gci_verify_heap(gc_heap_t *heap)
bh_assert(heap && gci_is_heap_valid(heap));
cur = (hmu_t *)heap->base_addr;
end = (hmu_t *)(heap->base_addr + heap->current_size);
while(cur < end)
{
hmu_verify(cur);
while(cur < end) {
hmu_verify(heap, cur);
cur = (hmu_t *)((gc_uint8*)cur + hmu_get_size(cur));
}
bh_assert(cur == end);

View File

@ -14,11 +14,29 @@ mem_allocator_t mem_allocator_create(void *mem, uint32_t size)
return gc_init_with_pool((char *) mem, size);
}
mem_allocator_t
mem_allocator_create_with_struct_and_pool(void *struct_buf,
uint32_t struct_buf_size,
void *pool_buf,
uint32_t pool_buf_size)
{
return gc_init_with_struct_and_pool((char *)struct_buf,
struct_buf_size,
pool_buf,
pool_buf_size);
}
void mem_allocator_destroy(mem_allocator_t allocator)
{
gc_destroy_with_pool((gc_handle_t) allocator);
}
uint32
mem_allocator_get_heap_struct_size()
{
return gc_get_heap_struct_size();
}
void *
mem_allocator_malloc(mem_allocator_t allocator, uint32_t size)
{
@ -39,16 +57,10 @@ void mem_allocator_free(mem_allocator_t allocator, void *ptr)
int
mem_allocator_migrate(mem_allocator_t allocator,
mem_allocator_t allocator_old)
char *pool_buf_new, uint32 pool_buf_size)
{
return gc_migrate((gc_handle_t) allocator,
(gc_handle_t) allocator_old);
}
int
mem_allocator_reinit_lock(mem_allocator_t allocator)
{
return gc_reinit_lock((gc_handle_t) allocator);
pool_buf_new, pool_buf_size);
}
void

View File

@ -17,9 +17,18 @@ typedef void *mem_allocator_t;
mem_allocator_t
mem_allocator_create(void *mem, uint32_t size);
mem_allocator_t
mem_allocator_create_with_struct_and_pool(void *struct_buf,
uint32_t struct_buf_size,
void *pool_buf,
uint32_t pool_buf_size);
void
mem_allocator_destroy(mem_allocator_t allocator);
uint32
mem_allocator_get_heap_struct_size(void);
void *
mem_allocator_malloc(mem_allocator_t allocator, uint32_t size);
@ -31,10 +40,7 @@ mem_allocator_free(mem_allocator_t allocator, void *ptr);
int
mem_allocator_migrate(mem_allocator_t allocator,
mem_allocator_t allocator_old);
int
mem_allocator_reinit_lock(mem_allocator_t allocator);
char *pool_buf_new, uint32 pool_buf_size);
void
mem_allocator_destroy_lock(mem_allocator_t allocator);