Use pre-created exec_env for instantiation and module_malloc/free,
use the same exec_env of the current thread to avoid potential
unexpected behavior.
And remove unnecessary shared_mem_lock in wasm_module_free,
which may cause dead lock.
Use the shared memory's shared_mem_lock to lock the whole atomic.wait and
atomic.notify processes, and use it for os_cond_reltimedwait and os_cond_notify,
so as to make the whole processes actual atomic operations:
the original implementation accesses the wait address with shared_mem_lock
and uses wait_node->wait_lock for os_cond_reltimedwait, which is not an atomic
operation.
And remove the unnecessary wait_map_lock and wait_lock, since the whole
processes are already locked by shared_mem_lock.
- Remove notify_stale_threads_on_exception and change atomic.wait
to be interruptible by keep waiting and checking every one second,
like the implementation of poll_oneoff in libc-wasi
- Wait all other threads exit and then get wasi exit_code to avoid
getting invalid value
- Inherit suspend_flags of parent thread while creating new thread to
avoid terminated flag isn't set for new thread
- Fix wasi-threads test case update_shared_data_and_alloc_heap
- Add "Lib wasi-threads enabled" prompt for cmake
- Fix aot get exception, use aot_copy_exception instead
Fix a data race for test main_proc_exit_wait.c from #1963.
And fix atomic_wait logic that was wrong before:
- a thread 1 started executing wasm instruction wasm_atomic_wait
but hasn't reached waiting on condition variable
- a main thread calls proc_exit and notifies all the threads that reached
waiting on condition variable
Which leads to thread 1 hang on waiting on condition variable after that
Now it's atomically checked whether proc_exit was already called.
- Implement atomic.fence to ensure a proper memory synchronization order
- Destroy exec_env_singleton first in wasm/aot deinstantiation
- Change terminate other threads to wait for other threads in
wasm_exec_env_destroy
- Fix detach thread in thread_manager_start_routine
- Fix duplicated lock cluster->lock in wasm_cluster_cancel_thread
- Add lib-pthread and lib-wasi-threads compilation to Windows CI
Raising "wasi proc exit" exception, spreading it to other threads and then
clearing it in all threads may result in unexpected behavior: the sub thread
may end first, handle the "wasi proc exit" exception and clear exceptions
of other threads, including the main thread. And when main thread's
exception is cleared, it may continue to run and throw "unreachable"
exception. This also leads to some assertion failed.
Ignore exception spreading for "wasi proc exit" and don't clear exception
of other threads to resolve the issue.
And add suspend flag check after atomic wait since the atomic wait may
be notified by other thread when exception occurs.
Add shared memory lock when accessing the address to atomic wait/notify
inside linear memory to resolve its data race issue.
And statically initialize the goto table of interpreter labels to resolve the
data race issue of accessing the table.
The function has been there for long. While what it does look a bit unsafe
as it calls a function which may be not wasm-wise exported explicitly, it's
useful and widely used when implementing callback-taking APIs, including
our pthread_create's implementation.
Multiple threads generated from the same module should use the same
lock to protect the atomic operations.
Before this PR, each thread used a different lock to protect atomic
operations (e.g. atomic add), making the lock ineffective.
Fix#1958.
Add APIs to help prepare the imports for the wasm-c-api `wasm_instance_new`:
- wasm_importtype_is_linked
- wasm_runtime_is_import_func_linked
- wasm_runtime_is_import_global_linked
- wasm_extern_new_empty
For wasm-c-api, developer may use `wasm_module_imports` to get the import
types info, check whether an import func/global is linked with the above API,
and ignore the linking of an import func/global with `wasm_extern_new_empty`.
Sample `wasm-c-api-import` is added and document is updated.
Enable setting running mode when executing a wasm bytecode file
- Four running modes are supported: interpreter, fast-jit, llvm-jit and multi-tier-jit
- Add APIs to set/get the default running mode of the runtime
- Add APIs to set/get the running mode of a wasm module instance
- Add running mode options for iwasm command line tool
And add size/opt level options for LLVM JIT
The definitions `enum WASMExceptionID` in the compilation of wamrc and the compilation
of Fast JIT are different, since the latter enables the Fast JIT macro while the former doesn't.
This causes that the exception ID in AOT file generated by wamrc may be different from
iwasm binary compiled with Fast JIT enabled, and may result in unexpected behavior.
Remove the macro control to resolve it.
This syscall doesn't need allocating stack or TLS and it's expected from the application
to do that instead. E.g. WASI-libc already does this for `pthread_create`.
Also fix some of the examples to allocate memory for stack and not use stack before
the stack pointer is set to a correct value.
Support modes:
- run a commander module only
- run a reactor module only
- run a commander module and a/multiple reactor modules together
commander propagates WASIArguments to reactors
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302
For now this implementation uses thread manager.
Not sure whether thread manager is needed in that case. In the future there'll be likely another syscall added (for pthread_exit) and for that we might need some kind of thread management - with that in mind, we keep thread manager for now and will refactor this later if needed.
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Use sha256 to hash binary file content. If the incoming wasm binary is
cached before, wasm_module_new() simply returns the existed one.
Use -DWAMR_BUILD_WASM_CACHE=0/1 to control the feature.
OpenSSL 1.1.1 is required if the feature is enabled.
Record the store number of current thread with struct thread_local_stores
or tls thread_local_stores_num to fix the issue:
- Only call wasm_runtime_init_thread_env() in the first wasm_store_new of
current thread
- Only call wasm_runtime_destroy_thread_env() in the last wasm_store_delete
of current thread
And remove the unused store list in the engine.
Refine AOT exception check in the caller when returning from callee function,
remove the exception check instructions when hw bound check is enabled to
improve the performance: create guard page to trigger signal handler when
exception occurs.
Add an option to pass user data to the allocator functions. It is common to
do this so that the host embedder can pass a struct as user data and access
that struct from the allocator, which gives the host embedder the ability to
do things such as track allocation statistics within the allocator.
Compile with `cmake -DWASM_MEM_ALLOC_WITH_USER_DATA=1` to enable
the option, and the allocator functions provided by the host embedder should
be like below (an extra argument `data` is added):
void *malloc(void *data, uint32 size) { .. }
void *realloc(void *data, uint32 size) { .. }
void free(void *data, void *ptr) { .. }
Signed-off-by: Andrew Chambers <ncham@amazon.com>