Implement multi-memory for classic-interpreter. Support core spec (and bulk memory) opcodes now,
and will support atomic opcodes, and add multi-memory export APIs in the future.
PS: Multi-memory spec test patched a lot for linking test to adapt for multi-module implementation.
The wasm loader is failing when multi-module support is on and the dependent
modules are not found; this enforces the AOT compiler integrations to prepare
dependent modules while it isn't necessary.
This PR allows allows missing imports in wasm loader and report error in wasm
instantiation instead, which enables the integrated AOT compiler to work as if
the multi-module support isn't turned on.
- All files under *core/iwasm/libraries/wasi-nn* are compiled as shared libraries
- *wasi-nn.c* is shared between backends
- Every backend has a separated shared library
- If wasi-nn feature is enabled, iwasm will depend on shared library libiwasm.so
instead of linking static library libvmlib.a
Support to get `wasm_memory_type_t memory_type` from API
`wasm_runtime_get_import_type` and `wasm_runtime_get_export_type`,
and then get shared flag, initial page cout, maximum page count
from the memory_type:
```C
bool
wasm_memory_type_get_shared(const wasm_memory_type_t memory_type);
uint32_t
wasm_memory_type_get_init_page_count(const wasm_memory_type_t memory_type);
uint32_t
wasm_memory_type_get_max_page_count(const wasm_memory_type_t memory_type);
```
Support getting global type from `wasm_runtime_get_import_type` and
`wasm_runtime_get_export_type`, and add two APIs:
```C
wasm_valkind_t
wasm_global_type_get_valkind(const wasm_global_type_t global_type);
bool
wasm_global_type_get_mutable(const wasm_global_type_t global_type);
```
Fix aot debugger compilation error on windows as reported in #3184.
And update the stack size configuration for product-mini zephyr sample
since the native stack overflow check was enhanced and the zephyr-sdk
was also upgraded.
- Add a few API (https://github.com/bytecodealliance/wasm-micro-runtime/issues/3325)
```c
wasm_runtime_detect_native_stack_overflow_size
wasm_runtime_detect_native_stack_overflow
```
- Adapt the runtime to use them
- Adapt samples/native-stack-overflow to use them
- Add a few missing overflow checks in the interpreters
- Build and run the sample on the CI
Enhance the GC subtyping checks:
- Fix issues in the type equivalence check
- Enable the recursive type subtyping check
- Add a equivalence type flag in defined types of aot file, if there is an
equivalence type before, just set it true and re-use the previous type
- Normalize the defined types for interpreter and AOT
- Enable spec test case type-equivalence.wast and type-subtyping.wast,
and enable some commented cases
- Enable set WAMR_BUILD_SANITIZER from cmake variable
- Add new API wasm_runtime_load_ex() in wasm_export.h
and wasm_module_new_ex in wasm_c_api.h
- Put aot_create_perf_map() into a separated file aot_perf_map.c
- In perf.map, function names include user specified module name
- Enhance the script to help flamegraph generations
Fix the warnings and issues reported:
- in Windows platform
- by CodeQL static code analyzing
- by Coverity static code analyzing
And update CodeQL script to build exception handling and memory features.
Adding a new cmake flag (cache variable) `WAMR_BUILD_MEMORY64` to enable
the memory64 feature, it can only be enabled on the 64-bit platform/target and
can only use software boundary check. And when it is enabled, it can support both
i32 and i64 linear memory types. The main modifications are:
- wasm loader & mini-loader: loading and bytecode validating process
- wasm runtime: memory instantiating process
- classic-interpreter: wasm code executing process
- Support memory64 memory in related runtime APIs
- Modify main function type check when it's memory64 wasm file
- Modify `wasm_runtime_invoke_native` and `wasm_runtime_invoke_native_raw` to
handle registered native function pointer argument when memory64 is enabled
- memory64 classic-interpreter spec test in `test_wamr.sh` and in CI
Currently, it supports memory64 memory wasm file that uses core spec
(including bulk memory proposal) opcodes and threads opcodes.
ps.
https://github.com/bytecodealliance/wasm-micro-runtime/issues/3091https://github.com/bytecodealliance/wasm-micro-runtime/pull/3240https://github.com/bytecodealliance/wasm-micro-runtime/pull/3260
This PR adds a max_memory_pages parameter to module instantiation APIs,
to allow overriding the max memory defined in the WASM module.
Sticking to the max memory defined in the module is quite limiting when
using shared memory in production. If targeted devices have different
memory constraints, many wasm files have to be generated with different
max memory values. And device constraints may not be known in advance.
Being able to set the max memory value during module instantiation allows
to reuse the same wasm module, e.g. by retrying instantiation with different
max memory value.
Implement the GC (Garbage Collection) feature for interpreter mode,
AOT mode and LLVM-JIT mode, and support most features of the latest
spec proposal, and also enable the stringref feature.
Use `cmake -DWAMR_BUILD_GC=1/0` to enable/disable the feature,
and `wamrc --enable-gc` to generate the AOT file with GC supported.
And update the AOT file version from 2 to 3 since there are many AOT
ABI breaks, including the changes of AOT file format, the changes of
AOT module/memory instance layouts, the AOT runtime APIs for the
AOT code to invoke and so on.
With this approach we can omit using memset() for the newly allocated memory
therefore the physical pages are not being used unless touched by the program.
This also simplifies the implementation.
This PR adds the initial support for WASM exception handling:
* Inside the classic interpreter only:
* Initial handling of Tags
* Initial handling of Exceptions based on W3C Exception Proposal
* Import and Export of Exceptions and Tags
* Add `cmake -DWAMR_BUILD_EXCE_HANDLING=1/0` option to enable/disable
the feature, and by default it is disabled
* Update the wamr-test-suites scripts to test the feature
* Additional CI/CD changes to validate the exception spec proposal cases
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1884587513f3c68bebfe9ad759bccdfed8
Signed-off-by: Ricardo Aguilar <ricardoaguilar@siemens.com>
Co-authored-by: Chris Woods <chris.woods@siemens.com>
Co-authored-by: Rene Ermler <rene.ermler@siemens.com>
Co-authored-by: Trenner Thomas <trenner.thomas@siemens.com>
Enhance the statistic of wasm function execution time, or the performance
profiling feature:
- Add os_time_thread_cputime_us() to get the cputime of a thread,
and use it to calculate the execution time of a wasm function
- Support the statistic of the children execution time of a function,
and dump it in wasm_runtime_dump_perf_profiling
- Expose two APIs:
wasm_runtime_sum_wasm_exec_time
wasm_runtime_get_wasm_func_exec_time
And rename os_time_get_boot_microsecond to os_time_get_boot_us.
For shared memory, the max memory size must be defined in advanced. Re-allocation
for growing memory can't be used as it might change the base address, therefore when
OS_ENABLE_HW_BOUND_CHECK is enabled the memory is mmaped, and if the flag is
disabled, the memory is allocated. This change introduces a flag that allows users to use
mmap for reserving memory address space even if the OS_ENABLE_HW_BOUND_CHECK
is disabled.
- Don't allocate the implicit/unused frame when calling the LLVM JIT function
- Don't set exec_env's thread handle and stack boundary in the recursive
calling from host, since they have been set in the first time calling
- Fix frame not freed in llvm_jit_call_func_bytecode
Change WASMMemoryInstance's field is_shared_memory's type from bool
to uint8 whose size is fixed, so as to make WASMMemoryInstance's size
and layout fixed and not break AOT ABI.
See discussion in https://github.com/bytecodealliance/wasm-micro-runtime/pull/2682.
Currently, `data.drop` instruction is implemented by directly modifying the
underlying module. It breaks use cases where you have multiple instances
sharing a single loaded module. `elem.drop` has the same problem too.
This PR fixes the issue by keeping track of which data/elem segments have
been dropped by using bitmaps for each module instances separately, and
add a sample to demonstrate the issue and make the CI run it.
Also add a missing check of dropped elements to the fast-jit `table.init`.
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2735
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2772
Add an extra argument `os_file_handle file` for `os_mmap` to support
mapping file from a file fd, and remove `os_get_invalid_handle` from
`posix_file.c` and `win_file.c`, instead, add it in the `platform_internal.h`
files to remove the dependency on libc-wasi.
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
- Fix potential invalid push param phis and add incoming phis to a un-existed basic block
- Fix potential invalid shift count int rotl/rotr opcodes
- Resize memory_data_size to UINT32_MAX if it is 4G when hw bound check is enabled
- Fix negative linear memory offset is used for 64-bit target it is const and larger than INT32_MAX
Split memory instance's field `uint32 ref_count` into `bool is_shared_memory`
and `uint16 ref_count`, and lock the memory only when `is_shared_memory`
flag is true, no need to acquire a lock for non-shared memory when shared
memory feature is enabled.
Avoid repeatedly initializing the shared memory data when creating the child
thread in lib-pthread or lib-wasi-threads.
Add shared memory lock when accessing some fields of the memory instance
if the memory instance is shared.
Init shared memory's memory_data_size/memory_data_end fields according to
the current page count but not max page count.
Add wasm_runtime_set_mem_bound_check_bytes, and refine the error message
when shared memory flag is found but the feature isn't enabled.
Avoid the stack traces getting mixed up together when multi-threading is enabled
by using exception_lock/unlock in dumping the call stacks.
And remove duplicated call stack dump in wasm_application.c.
Also update coding guideline CI to fix the clang-format-12 not found issue.
Support muti-module for AOT mode, currently only implement the
multi-module's function import feature for AOT, the memory/table/
global import are not implemented yet.
And update wamr-test-suites scripts, multi-module sample and some
CIs accordingly.