- Fix potential invalid push param phis and add incoming phis to a un-existed basic block
- Fix potential invalid shift count int rotl/rotr opcodes
- Resize memory_data_size to UINT32_MAX if it is 4G when hw bound check is enabled
- Fix negative linear memory offset is used for 64-bit target it is const and larger than INT32_MAX
Split memory instance's field `uint32 ref_count` into `bool is_shared_memory`
and `uint16 ref_count`, and lock the memory only when `is_shared_memory`
flag is true, no need to acquire a lock for non-shared memory when shared
memory feature is enabled.
Avoid repeatedly initializing the shared memory data when creating the child
thread in lib-pthread or lib-wasi-threads.
Add shared memory lock when accessing some fields of the memory instance
if the memory instance is shared.
Init shared memory's memory_data_size/memory_data_end fields according to
the current page count but not max page count.
Add wasm_runtime_set_mem_bound_check_bytes, and refine the error message
when shared memory flag is found but the feature isn't enabled.
When labels-as-values is enabled in a target which doesn't support
unaligned address access, 16-bit offset is used to store the relative
offset between two opcode labels. But it is a little small and the loader
may report "pre-compiled label offset out of range" error.
Emitting 32-bit data instead to resolve the issue: emit label address in
32-bit target and emit 32-bit relative offset in 64-bit target.
See also:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/2635
To allow non-POSIX platforms such as Windows to support WASI libc
filesystem functionality, create a set of wrapper functions which provide a
platform-agnostic interface to interact with the host filesystem. For now,
the Windows implementation is stubbed but this will be implemented
properly in a future PR. There are no functional changes in this change,
just a reorganization of code to move any direct POSIX references out of
posix.c in the libc implementation into posix_file.c under the shared
POSIX sources.
See https://github.com/bytecodealliance/wasm-micro-runtime/issues/2495 for a
more detailed overview of the plan to port the WASI libc filesystem to Windows.
Fixed a bug in the processing of the br_table_cache opcode that caused out-of-range
references when the label index was greater than the length of the label.
Avoid the stack traces getting mixed up together when multi-threading is enabled
by using exception_lock/unlock in dumping the call stacks.
And remove duplicated call stack dump in wasm_application.c.
Also update coding guideline CI to fix the clang-format-12 not found issue.
Support muti-module for AOT mode, currently only implement the
multi-module's function import feature for AOT, the memory/table/
global import are not implemented yet.
And update wamr-test-suites scripts, multi-module sample and some
CIs accordingly.
`wasm_loader_push_pop_frame_offset` may pop n operands by using
`loader_ctx->stack_cell_num` to check whether the operand can be
popped or not. While `loader_ctx->stack_cell_num` is updated in the
later `wasm_loader_push_pop_frame_ref`, the check may fail if the stack
is in polymorphic state and lead to `ctx->frame_offset` underflow.
Fix issue #2577 and #2586.
Introduce module instance context APIs which can set one or more contexts created
by the embedder for a wasm module instance:
```C
wasm_runtime_create_context_key
wasm_runtime_destroy_context_key
wasm_runtime_set_context
wasm_runtime_set_context_spread
wasm_runtime_get_context
```
And make libc-wasi use it and set wasi context as the first context bound to the wasm
module instance.
Also add samples.
Refer to https://github.com/bytecodealliance/wasm-micro-runtime/issues/2460.
When embedding WAMR, this PR allows to register a callback that is
invoked when memory.grow fails.
In case of memory allocation failures, some languages allow to handle
the error (e.g. by checking the return code of malloc/calloc in C), some
others (e.g. Rust) just panic.
- Inherit shared memory from the parent instance, instead of
trying to look it up by the underlying module. The old method
works correctly only when every cluster uses different module.
- Use reference count in WASMMemoryInstance/AOTMemoryInstance
to mark whether the memory is shared or not
- Retire WASMSharedMemNode
- For atomic opcode implementations in the interpreters, use
a global lock for now
- Update the internal API users
(wasi-threads, lib-pthread, wasm_runtime_spawn_thread)
Fixes https://github.com/bytecodealliance/wasm-micro-runtime/issues/1962
We have observed a significant performance degradation after merging
https://github.com/bytecodealliance/wasm-micro-runtime/pull/1991
Instead of protecting suspend flags with a mutex, we implement the flags
as atomic variable and only use mutex when atomics are not available
on a given platform.
Allow to use `cmake -DWAMR_CONFIGURABLE_BOUNDS_CHECKS=1` to
build iwasm, and then run `iwasm --disable-bounds-checks` to disable the
memory access boundary checks.
And add two APIs:
`wasm_runtime_set_bounds_checks` and `wasm_runtime_is_bounds_checks_enabled`
## Context
Currently, WAMR supports compiling iwasm with flag `WAMR_BUILD_WASI_NN`.
However, there are scenarios where the user might prefer having it as a shared library.
## Proposed Changes
Decouple wasi-nn context management by internally managing the context given
a module instance reference.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
Add nightly (UTC time) checks with asan and ubsan, and also put gcc-4.8 build
to nightly run since we don't need to run it with every PR.
Co-authored-by: Maksim Litskevich <makslit@amazon.co.uk>
In LLVM AOT/JIT compiler, only need to check the suspend_flags when memory is
a shared memory since the shared memory must be enabled for multi-threading,
so as not to impact the performance in non-multi-threading memory mode. Also
refine the LLVM IRs to check the suspend_flags.
And fix an issue of multi-tier jit for multi-threading, the instance of the child thread
should be removed from the instance list before it is de-instantiated.
Load memory data size in each time memory access boundary check in
multi-threading mode since it may be changed by other threads when
memory growing.
And use `memory->memory_data_size` instead of
`memory->num_bytes_per_page * memory->cur_page_count` to refine
the code.
When ref.func opcode refers to a function whose function index no smaller than
current function, the destination func should be forward-declared: it is declared
in the table element segments, or is declared in the export list.
Try using existing exec_env to execute wasm app's malloc/free func and
execute post instantiation functions. Create a new exec_env only when
no existing exec_env was found.
Use pre-created exec_env for instantiation and module_malloc/free,
use the same exec_env of the current thread to avoid potential
unexpected behavior.
And remove unnecessary shared_mem_lock in wasm_module_free,
which may cause dead lock.
Use the shared memory's shared_mem_lock to lock the whole atomic.wait and
atomic.notify processes, and use it for os_cond_reltimedwait and os_cond_notify,
so as to make the whole processes actual atomic operations:
the original implementation accesses the wait address with shared_mem_lock
and uses wait_node->wait_lock for os_cond_reltimedwait, which is not an atomic
operation.
And remove the unnecessary wait_map_lock and wait_lock, since the whole
processes are already locked by shared_mem_lock.
- Implement atomic.fence to ensure a proper memory synchronization order
- Destroy exec_env_singleton first in wasm/aot deinstantiation
- Change terminate other threads to wait for other threads in
wasm_exec_env_destroy
- Fix detach thread in thread_manager_start_routine
- Fix duplicated lock cluster->lock in wasm_cluster_cancel_thread
- Add lib-pthread and lib-wasi-threads compilation to Windows CI
Raising "wasi proc exit" exception, spreading it to other threads and then
clearing it in all threads may result in unexpected behavior: the sub thread
may end first, handle the "wasi proc exit" exception and clear exceptions
of other threads, including the main thread. And when main thread's
exception is cleared, it may continue to run and throw "unreachable"
exception. This also leads to some assertion failed.
Ignore exception spreading for "wasi proc exit" and don't clear exception
of other threads to resolve the issue.
And add suspend flag check after atomic wait since the atomic wait may
be notified by other thread when exception occurs.
- Use execute_post_instantiate_functions to call start, _initialize,
__post_instantiate, __wasm_call_ctors functions after instantiation
- Always call start function for both main instance and sub instance
- Only call _initialize and __post_instantiate for main instance
- Only call ___wasm_call_ctors for main instance and when bulk memory
is enabled and wasi import functions are not found
- When hw bound check is enabled, use the existing exec_env_tls
to call func for sub instance, and switch exec_env_tls's module inst
to current module inst to avoid checking failure and using the wrong
module inst
Add shared memory lock when accessing the address to atomic wait/notify
inside linear memory to resolve its data race issue.
And statically initialize the goto table of interpreter labels to resolve the
data race issue of accessing the table.
The start/initialize functions of wasi module are to do some initialization work
during instantiation, which should be only called one time in the instantiation
of main instance. For example, they may initialize the data in linear memory,
if the data is changed later by the main instance, and re-initialized again by
the child instance, unexpected behaviors may occur.
And clear a shadow warning in classic interpreter.
Multiple threads generated from the same module should use the same
lock to protect the atomic operations.
Before this PR, each thread used a different lock to protect atomic
operations (e.g. atomic add), making the lock ineffective.
Fix#1958.
Add APIs to help prepare the imports for the wasm-c-api `wasm_instance_new`:
- wasm_importtype_is_linked
- wasm_runtime_is_import_func_linked
- wasm_runtime_is_import_global_linked
- wasm_extern_new_empty
For wasm-c-api, developer may use `wasm_module_imports` to get the import
types info, check whether an import func/global is linked with the above API,
and ignore the linking of an import func/global with `wasm_extern_new_empty`.
Sample `wasm-c-api-import` is added and document is updated.
When de-instantiating the wasm module instance, remove it from the module's
instance list before freeing func_ptrs and fast_jit_func_ptrs of the instance, to avoid
accessing these freed memory in the JIT backend compilation threads.
Enable setting running mode when executing a wasm bytecode file
- Four running modes are supported: interpreter, fast-jit, llvm-jit and multi-tier-jit
- Add APIs to set/get the default running mode of the runtime
- Add APIs to set/get the running mode of a wasm module instance
- Add running mode options for iwasm command line tool
And add size/opt level options for LLVM JIT
The definitions `enum WASMExceptionID` in the compilation of wamrc and the compilation
of Fast JIT are different, since the latter enables the Fast JIT macro while the former doesn't.
This causes that the exception ID in AOT file generated by wamrc may be different from
iwasm binary compiled with Fast JIT enabled, and may result in unexpected behavior.
Remove the macro control to resolve it.
Change an error to warning when checking wasi abi compatibility in loader, for rust case below:
#[no_mangle]
pub extern "C" fn main() {
println!("foo");
}
compile it with `cargo build --target wasm32-wasi`, a wasm file is generated with wasi apis imported
and a "void main(void)" function exported.
Other runtime e.g. wasmtime allows to load it and execute the main function with `--invoke` option.
- Reorganize the library structure
- Use the latest version of `wasi-nn` wit (Oct 25, 2022):
0f77c48ec1/wasi-nn.wit.md
- Split logic that converts WASM structs to native structs in a separate file
- Simplify addition of new frameworks
This syscall doesn't need allocating stack or TLS and it's expected from the application
to do that instead. E.g. WASI-libc already does this for `pthread_create`.
Also fix some of the examples to allocate memory for stack and not use stack before
the stack pointer is set to a correct value.
The original CI didn't actually run wasi test suite for x86-32 since the `TEST_ON_X86_32=true`
isn't written into $GITHUB_ENV.
And refine the error output when failed to link import global.
Should use import_function_count but not import_count to calculate
the func_index in handle_name_section when custom name section
feature is enabled.
And clear the compile warnings of mini loader.
Support modes:
- run a commander module only
- run a reactor module only
- run a commander module and a/multiple reactor modules together
commander propagates WASIArguments to reactors
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302
Allow to add watchpoints to variables for source debugging. For instance:
`breakpoint set variable var`
will pause WAMR execution when the address at var is written to.
Can also set read/write watchpoints by passing r/w flags. This will pause
execution when the address at var is read:
`watchpoint set variable -w read var`
Add two linked lists for read/write watchpoints. When the debug message
handler receives a watchpoint request, it adds/removes to one/both of these
lists. In the interpreter, when an address is read or stored to, check whether
the address is in these lists. If so, throw a sigtrap and suspend the process.
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302
Allow to add watchpoints to variables for source debugging. For instance:
`breakpoint set variable var`
will pause WAMR execution when the address at var is written to.
Can also set read/write watchpoints by passing r/w flags. This will pause
execution when the address at var is read:
`watchpoint set variable -w read var`
Add two linked lists for read/write watchpoints. When the debug message
handler receives a watchpoint request, it adds/removes to one/both of these
lists. In the interpreter, when an address is read or stored to, check whether
the address is in these lists. If so, throw a sigtrap and suspend the process.
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Refine AOT exception check in the caller when returning from callee function,
remove the exception check instructions when hw bound check is enabled to
improve the performance: create guard page to trigger signal handler when
exception occurs.
Limit max_stack_cell_num/max_csp_num to be no larger than UINT16_MAX,
and don't check all_cell_num in interpreter again.
And refine some codes in interpreter.
Refine the generated LLVM IRs at the beginning of each LLVM AOT/JIT function
to fasten the LLVM IR optimization:
- Only create argv_buf if there are func calls in this function
- Only create native stack bound if stack bound check is enabled
- Only create aux stack info if there is opcode set_global_aux_stack
- Only create native symbol if indirect_mode is enabled
- Only create memory info if there are memory operations
- Only create func_type_indexes if there is opcode call_indirect
Add a new options to control the native stack hw bound check feature:
- Besides the original option `cmake -DWAMR_DISABLE_HW_BOUND_CHECK=1/0`,
add a new option `cmake -DWAMR_DISABLE_STACK_HW_BOUND_CHECK=1/0`
- When the linear memory hw bound check is disabled, the stack hw bound check
will be disabled automatically, no matter what the input option is
- When the linear memory hw bound check is enabled, the stack hw bound check
is enabled/disabled according to the value of input option
- Besides the original option `--bounds-checks=1/0`, add a new option
`--stack-bounds-checks=1/0` for wamrc
Refer to: https://github.com/bytecodealliance/wasm-micro-runtime/issues/1677
Refactor LLVM JIT for some purposes:
- To simplify the source code of JIT compilation
- To simplify the JIT modes
- To align with LLVM latest changes
- To prepare for the Multi-tier JIT compilation, refer to #1302
The changes mainly include:
- Remove the MCJIT mode, replace it with ORC JIT eager mode
- Remove the LLVM legacy pass manager (only keep the LLVM new pass manager)
- Change the lazy mode's LLVM module/function binding:
change each function in an individual LLVM module into all functions in a single LLVM module
- Upgraded ORC JIT to ORCv2 JIT to enable lazy compilation
Refer to #1468
Refactor the layout of interpreter and AOT module instance:
- Unify the interp/AOT module instance, use the same WASMModuleInstance/
WASMMemoryInstance/WASMTableInstance data structures for both interpreter
and AOT
- Make the offset of most fields the same in module instance for both interpreter
and AOT, append memory instance structure, global data and table instances to
the end of module instance for interpreter mode (like AOT mode)
- For extra fields in WASM module instance, use WASMModuleInstanceExtra to
create a field `e` for interpreter
- Change the LLVM JIT module instance creating process, LLVM JIT uses the WASM
module and module instance same as interpreter/Fast-JIT mode. So that Fast JIT
and LLVM JIT can access the same data structures, and make it possible to
implement the Multi-tier JIT (tier-up from Fast JIT to LLVM JIT) in the future
- Unify some APIs: merge some APIs for module instance and memory instance's
related operations (only implement one copy)
Note that the AOT ABI is same, the AOT file format, AOT relocation types, how AOT
code accesses the AOT module instance and so on are kept unchanged.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1384
Memory num_bytes_per_page was incorrectly set in memory enlarging for
shared memory, we fix it. And don't set memory_data_size again for shared
memory.
Implement more socket APIs, refer to #1336 and below PRs:
- Implement wasi_addr_resolve function (#1319)
- Fix socket-api byte order issue when host/network order are the same (#1327)
- Enhance sock_addr_local syscall (#1320)
- Implement sock_addr_remote syscall (#1360)
- Add support for IPv6 in WAMR (#1411)
- Implement ns lookup allowlist (#1420)
- Implement sock_send_to and sock_recv_from system calls (#1457)
- Added http downloader and multicast socket options (#1467)
- Fix `bind()` calls to receive the correct size of `sockaddr` structure (#1490)
- Assert on correct parameters (#1505)
- Copy only received bytes from socket recv buffer into the app buffer (#1497)
Co-authored-by: Marcin Kolny <mkolny@amazon.com>
Co-authored-by: Marcin Kolny <marcin.kolny@gmail.com>
Co-authored-by: Callum Macmillan <callumimacmillan@gmail.com>
Fix two issues of building WAMR on Windows:
- The build_llvm.py script calls itself, spawning instances faster than they expire,
which makes Python3 eat up the entire RAM in a pretty short time.
- The MSVC compiler doesn't support preprocessor statements inside macro expressions.
Two places inside bh_assert() were found.
And enable classic interpreter instead fast interpreter when llvm jit is enabled,
so as to fix the issue that llvm jit cannot handle opcode drop_64/select_64.
Remove handling opcode DROP_64/SELECT_64 in loader stage
prepare_bytecode, as they are the modified opcodes of DROP/SELECT
for optimization purpose, but not the opcodes defined by spec.
Destroy Fast-JIT compiler after destroying the modules loaded by
multi-module feature, since the Fast JIT's code cache allocator may
be used by these modules. If the Fast JIT's code cache allocator was
destroyed, then runtime will fail to destroy these modules.
And fix the issue of destroying import module's memory instance.
Normalize wasm types, for the two wasm types, if their parameter types
and result types are the same, we only save one copy, so as to reduce
the footprint and simplify the type comparison in opcode CALL_INDIRECT.
And fix issue in interpreter globals_instantiate, and remove used codes.
Reserve one pointer size for fast-interp code_compiled_size: if the last opcode of
current function is to be dropped (e.g. OP_DROP), the peak memory usage will
be larger than the final code_compiled_size, we record the peak size to ensure
there won't be invalid memory access during the second traversing.
Remove some unused fields in module instance and the related codes,
which are introduced by emsdk some special mode (-DSIDE_MODULE=1),
and are not required now.
Should not clear last label's polymorphic state after current label is popped
Fix invalid func_idx check in opcode REF_FUNC
Add check when there are extra unneeded bytecodes for a wasm function
Fix dump call stack issue in interpreter introduced by hw bound check:
the call stack isn't dumped if the exception is thrown and caught by
signal handler.
And restore the wasm stack frame to the original status after calling a
wasm function.
Import WAMR Fast JIT which is a lightweight JIT with quick startup, small footprint,
relatively good performance (~40% to ~50% of LLVM JIT) and good portability.
Platforms supported: Linux, MacOS and Linux SGX.
Arch supported: x86-64.
Before resolving the module function's export in wasm_mini_loader,
"module->retain_function" need to be initialized, otherwise,
the "__new" function export will lead to abort.
issue: https://github.com/bytecodealliance/wasm-micro-runtime/issues/1332
Co-authored-by: yaozhongxiao <yaozhongxiao@bytedance.com>
Fix build script to enable hw bound check for interpreter when
AOT is disabled, so as to enable spec cases test for interp with
hw bound check. And fix the issues found.
Implement boundary check with hardware trap for interpreter on
64-bit platforms:
- To improve the performance of interpreter and Fast JIT
- To prepare for multi-tier compilation for the feature
Linux/MacOS/Windows 64-bit are enabled.
Sub module's auxiliary stack boundary and bottom may be different from
main module's counterpart, so when calling sub module, its aux stack info
should be gotten and set to exec_env firstly, or aux stack overflow and out
of bounds memory access exception may be thrown when calling sub
module's function.
Fix the issue reported in PR #1278.
Enable dump call stack to a buffer, use API
`wasm_runtime_get_call_stack_buf_size` to get the required buffer size
and use API
`wasm_runtime_dump_call_stack_to_buf` to dump call stack to a buffer
module_wasm_app.c: add return value check for wasm_runtime_call_wasm
aot_runtime.c: add return value check for aot_get_default_memory
aot_runtime.c: add return value check before calling wasm app malloc/free func
wasm_runtime_common.c: fix dead code warning in wasm_runtime_load_from_sections
aot_emit_memory.c: fix potential integer overflow issue
wasm_runtime.c: remove dead code in memory_instantiate, add assertion for globals
samples simple/gui/littlevgl: fix fields of struct sigaction initialization issue
host-tool: add return value check for sendto
Fix allocate zero size memory warning reported by wasm_runtime_malloc
when allocating the import fun pointers if the import func count is 0:
`warning: wasm_runtime_malloc with size zero`
Refine opcode br_table for classic interpreter as there may be a lot of
leb128 decoding when the br count is big:
1. Use the bytecode itself to store the decoded leb br depths if each
decoded depth can be stored with one byte
2. Create br_table cache to store the decode leb br depths if the decoded
depth cannot be stored with one byte
After the optimization, the class interpreter can access the br depths array
with index, no need to decode the leb128 again.
And fix function record_fast_op() return value unchecked issue in source
debugging feature.
Fix fault modification on data segment in wasm module which leads to
fail to instantiate wasm module next time, reported by #1115.
Co-authored-by: yangwenming <yangwenming@bytedance.com>
Fix an UBSan complaint introduced by recent change by adding more checks
to word_copy:
```
wasm_interp_fast.c:792:9: runtime error: applying zero offset to null pointer
```
Add aot relocation for ".rodata.str" symbol to support more cases
Fix some coding style issues
Fix aot block/value stack destroy issue
Refine classic/fast interpreter codes
Clear compile warning of libc_builtin_wrapper.c in 32-bit platform
Fix the potential integer overflow of const index in const space of fast interpreter,
emit i32/i64.const opcode when the const index is larger than INT32_MAX.
And add check for the function local cell num.
Fix handle OP_TABLE_COPY issue
Fix loader handle OP_BLOCK/IF/LOOP issue if type_index is larger than 256
Fix loader handle OP_GET_GLOBAL, allow to change to GET_GLOBAL_64 for
aot compiler similiar to handling OP_SET_GLOBAL
Refine loader handle OP_GET/SET/TEE_LOCAL, disable changing opcode when
source debugging is enabled, so as no need to record the change of opcode
Refine wasm_interp_interp_frame_size to reduce the wasm operand stack usage
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Remove the `const` flag for the first argument `buf` of wasm_runtime_load as
it might be modified by runtime for footprint and performance purpose, and
update the related functions and document.
Refer to [Networking API design](https://github.com/WebAssembly/WASI/issues/370)
and [feat(socket): berkeley socket API v2](https://github.com/WebAssembly/WASI/pull/459):
- Support the socket API of synchronous mode, including `socket/bind/listen/accept/send/recv/close/shutdown`,
the asynchronous mode isn't supported yet.
- Support adding `--addr-pool=<pool1,pool2,..>` argument for command line to identify the valid ip address range
- Add socket-api sample and update the document
Currently when calling wasm_runtime_call_wasm() to invoke wasm function
with externref type argument from runtime embedder, developer needs to
use wasm_externref_obj2ref() to convert externref obj into an internal ref
index firstly, which is not convenient to developer.
To align with GC feature in which all the references passed to
wasm_runtime_call_wasm() can be object pointers directly, we change the
interface of wasm_runtime_call_wasm() to allow to pass object pointer
directly for the externref argument, and refactor the related codes, update
the related samples and the document.
Refine is_xip_file check, when e_type isn't E_TYPE_XIP, just return false
and no need to go through all the other sections of the AOT file.
Refine pointer range check, convert pointer to uintptr_t type before
comparison to yield possible sanitizer pointer overflow error.
Refer to https://github.com/WebAssembly/WASI/blob/main/design/application-abi.md
to check the WASI ABI compatibility:
- Command (main module) may export _start function with signature "()"
- Reactor (sub module) may export _initialize function with signature "()"
- _start and _initialize can not be exported at the same time
- Reactor cannot export _start function
- Command and Reactor must export memory
And
- Rename module->is_wasi_module to module->import_wasi_api
- Refactor wasm_loader_find_export()
- Remove MULTI_MODULE related codes from mini_loader
- Update multi-module samples
- Fix a "use-after-free" issue. Since we reuse the memory instance of sub module,
just to protect it from freeing an imported memory instance
Use `PRIxxx` related macros to format the output strings so as to clear
compile warnings, e.g. PRIu32, PRId32, PRIX32, PRIX64 and so on.
And add the related macro definitions in platform_common.h if they
are not defined, as some compilers might not support them.
Update spec test cases to commit 2460ad02b51fb5ed5824f44de287a8638b19a5f8,
and modify wamr test suite script as the SIMD cases have been added into spec
main repo by default, no need to clone SIMD repo again when testing SIMD.
Refine some codes in wasm loader
Add -Wshadow to gcc compile flags and fix some variable shadowed issues
Fix function parameter/return types not checked issue
Fix fast-interp loader reserve_block_ret() not handle V128 return type issue
Fix mini loader load_table_segment_section() failed issue
Add detailed comments for argc argument in wasm_runtime_call_wasm()
- move the wait_cond from exec_env to debug_instance, so the debug thread can be waken up by any threads
- process more general query message from debugger
- refine debug instance create/destroy mechanism
- avoid creating debug instance during module instantiating
- avoid blocking execution thread during creating debug instance
- update related documents
Don't throw exception when module_malloc memory failed:
- Exception will terminate the wasm app, it's not necessary since app can
check the result of dynamic allocation and do some cleanup or fallback
operation on failure instead of 'crash' directly.
- In acquire_wait_info, call hasn_map_find only when the address isn't NULL,
or there are many senseless error logs
When auxiliary stack global isn't found in wasm app, it must be unused in
the wasm app, we set it to __heap_base global and set its size to 0, so as to
shrink the linear memory to reduce the memory consumption.
Enable ref types feature and bulk memory feature by default for wamrc
and provide "--disable-ref-types", "--disable-bulk-memory" to disable
them.
And remove the ref_type_flag option in wasm_loader.c which is used to
control whether to enable ref types or not when ENABLE_REF_TYPES
macro is enabled in wamrc. As the wasm binary format with ref types
is compatible with the binary format before, we can remove the option.
Also update the spec test scripts.
Fix some potential pointer overflows in aot applying relocations and
several other places.
And add sanitizer compiler flags to wamrc CMakeLists.txt to detect
such issues.
Currently the string in the wasm/aot file will be duplicated and stored
into const string list/set in interpreter/aot loader, which leads to extra
unnecessary memory consumption if the file buffer can be referred to
after loading. We refine the string storage by:
- if the file buffer can be referred to after loading and it is writable, we
reuse the file buffer to store the string but not store it into the const
string set: move string backward and append '\0'
- emit string with '\0' only for XIP mode in which the AOT file is readonly
- if the file buffer cannot be referred to, e.g. in app manager, keep the
same behavior as before
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Enable emitting custom name section to aot file when adding
`--enable-dump-call-stack` or `--enable-dump-call-stack` to
wamrc and there is custom name section in wasm file, which
can be generated by wasi-sdk/emcc "-g" option. So aot runtime
can also get the function name from the custom name section
instead of export section, to which developer should use
`--export-all` for wasi-sdk/emcc to generate export function
names.
- fix data race issue between debug control thread and main thread
- fix possible memory leaks in breakpoints list
- fix memory uninitialized issues
- remove unused data structures
- add more checks when handling packet and args
- fix mini-loader issues
- fix config_common.cmake fast interp prompt issue
Implement source debugging feature for classic interpreter and AOT:
- use `cmake -DWAMR_BUILD_DEBUG_INTERP=1` to enable interpreter debugging
- use `cmake -DWAMR_BUILD_DEBUG_AOT=1` to enable AOT debugging
See doc/source_debugging.md for more details.
Implement the latest SIMD opcodes and update LLVM 13.0,
update the llvm build scripts, update the sample workloads‘ build scripts,
and build customized wasi-sdk to build some workloads.
Also refine the CI rules.
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Before calling import function of sub module inst in multi-module mode,
we should copy the arguments to output area by using the func inst of
sub module inst but not func inst of current module inst.
Implement wasm_runtime_init_thread_env() for Windows platform by calling os_thread_env_init(): if current thread is created by developer himself but not runtime, developer should call wasm_runtime_init_thread_env() to init the thread environment before calling wasm function, and call wasm_runtime_destroy_thread_env() before thread exits.
And clear compile warnings for Windows platform, fix compile error for AliOS-Things platform
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Enable RISCV AOT support, the supported ABIs are LP64 and LP64D for riscv64, ILP32 and ILP32D for riscv32.
For wamrc:
use --target=riscv64/riscv32 to specify the target arch of output AOT file,
use --target-abi=lp64d/lp64/ilp32d/ilp32 to specify the target ABI,
if --target-abi isn't specified, by default lp64d is used for riscv64, and ilp32d is used for riscv32.
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
Co-authored-by: wenyongh <wenyong.huang@intel.com>
And add wasm_engine_new_with_args() declaration in wasm_c_api.h
Fix wasm-c-api frame func_offset issue in fast interp mode
Remove sanitize compiler flag in product-mini linux CMakeLists.txt
And enable to cache compiled AOT file buffer for wasm-c-api JIT mode
Avoid checks that rely on undefined C behavior
Fix issues of wasm-c-api sample trap and callback_chain
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Implement more wasm-c-api APIs to support Envoy integration:
- sync up with latest c-api definition
- change CMakeLists to export necessary headers and install the static library of iwasm
- enable to export tables and memories
- support memorytype and tabletype APIs
- update wasm-c-api sampels
- enable to export importtype APIs
And refine bazel scripts for sample XNNPACK workload, add license headers for sample simple.
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Implement spec reference-types proposal for interpreter, AOT and JIT, update documents and add sample. And upgrade AOT_CURRENT_VERSION to 3 as AOT file format and AOT module instance layout are changed.
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
AssemblyScript's latest compiler 0.18 exports __new__/__pin__/unpin APIs to allocate/retain/free memory instead of __new/__retain/__release APIs in older version, we lookup functions of both version to make it compatible for both version.
Remove check for heap_size==0 when creating wasi ctx, as the related data structures are allocated from global heap instead of app heap now, so it also works when app heap isn't created.
Also add v128 type for Windows so as to fix wamrc compilation error in Windows platform.
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>