Enable setting running mode when executing a wasm bytecode file
- Four running modes are supported: interpreter, fast-jit, llvm-jit and multi-tier-jit
- Add APIs to set/get the default running mode of the runtime
- Add APIs to set/get the running mode of a wasm module instance
- Add running mode options for iwasm command line tool
And add size/opt level options for LLVM JIT
The definitions `enum WASMExceptionID` in the compilation of wamrc and the compilation
of Fast JIT are different, since the latter enables the Fast JIT macro while the former doesn't.
This causes that the exception ID in AOT file generated by wamrc may be different from
iwasm binary compiled with Fast JIT enabled, and may result in unexpected behavior.
Remove the macro control to resolve it.
Change an error to warning when checking wasi abi compatibility in loader, for rust case below:
#[no_mangle]
pub extern "C" fn main() {
println!("foo");
}
compile it with `cargo build --target wasm32-wasi`, a wasm file is generated with wasi apis imported
and a "void main(void)" function exported.
Other runtime e.g. wasmtime allows to load it and execute the main function with `--invoke` option.
- Reorganize the library structure
- Use the latest version of `wasi-nn` wit (Oct 25, 2022):
0f77c48ec1/wasi-nn.wit.md
- Split logic that converts WASM structs to native structs in a separate file
- Simplify addition of new frameworks
This syscall doesn't need allocating stack or TLS and it's expected from the application
to do that instead. E.g. WASI-libc already does this for `pthread_create`.
Also fix some of the examples to allocate memory for stack and not use stack before
the stack pointer is set to a correct value.
The original CI didn't actually run wasi test suite for x86-32 since the `TEST_ON_X86_32=true`
isn't written into $GITHUB_ENV.
And refine the error output when failed to link import global.
Should use import_function_count but not import_count to calculate
the func_index in handle_name_section when custom name section
feature is enabled.
And clear the compile warnings of mini loader.
Support modes:
- run a commander module only
- run a reactor module only
- run a commander module and a/multiple reactor modules together
commander propagates WASIArguments to reactors
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302
Allow to add watchpoints to variables for source debugging. For instance:
`breakpoint set variable var`
will pause WAMR execution when the address at var is written to.
Can also set read/write watchpoints by passing r/w flags. This will pause
execution when the address at var is read:
`watchpoint set variable -w read var`
Add two linked lists for read/write watchpoints. When the debug message
handler receives a watchpoint request, it adds/removes to one/both of these
lists. In the interpreter, when an address is read or stored to, check whether
the address is in these lists. If so, throw a sigtrap and suspend the process.
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302
Allow to add watchpoints to variables for source debugging. For instance:
`breakpoint set variable var`
will pause WAMR execution when the address at var is written to.
Can also set read/write watchpoints by passing r/w flags. This will pause
execution when the address at var is read:
`watchpoint set variable -w read var`
Add two linked lists for read/write watchpoints. When the debug message
handler receives a watchpoint request, it adds/removes to one/both of these
lists. In the interpreter, when an address is read or stored to, check whether
the address is in these lists. If so, throw a sigtrap and suspend the process.
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Refine AOT exception check in the caller when returning from callee function,
remove the exception check instructions when hw bound check is enabled to
improve the performance: create guard page to trigger signal handler when
exception occurs.
Limit max_stack_cell_num/max_csp_num to be no larger than UINT16_MAX,
and don't check all_cell_num in interpreter again.
And refine some codes in interpreter.
Refine the generated LLVM IRs at the beginning of each LLVM AOT/JIT function
to fasten the LLVM IR optimization:
- Only create argv_buf if there are func calls in this function
- Only create native stack bound if stack bound check is enabled
- Only create aux stack info if there is opcode set_global_aux_stack
- Only create native symbol if indirect_mode is enabled
- Only create memory info if there are memory operations
- Only create func_type_indexes if there is opcode call_indirect
Add a new options to control the native stack hw bound check feature:
- Besides the original option `cmake -DWAMR_DISABLE_HW_BOUND_CHECK=1/0`,
add a new option `cmake -DWAMR_DISABLE_STACK_HW_BOUND_CHECK=1/0`
- When the linear memory hw bound check is disabled, the stack hw bound check
will be disabled automatically, no matter what the input option is
- When the linear memory hw bound check is enabled, the stack hw bound check
is enabled/disabled according to the value of input option
- Besides the original option `--bounds-checks=1/0`, add a new option
`--stack-bounds-checks=1/0` for wamrc
Refer to: https://github.com/bytecodealliance/wasm-micro-runtime/issues/1677
Refactor LLVM JIT for some purposes:
- To simplify the source code of JIT compilation
- To simplify the JIT modes
- To align with LLVM latest changes
- To prepare for the Multi-tier JIT compilation, refer to #1302
The changes mainly include:
- Remove the MCJIT mode, replace it with ORC JIT eager mode
- Remove the LLVM legacy pass manager (only keep the LLVM new pass manager)
- Change the lazy mode's LLVM module/function binding:
change each function in an individual LLVM module into all functions in a single LLVM module
- Upgraded ORC JIT to ORCv2 JIT to enable lazy compilation
Refer to #1468
Refactor the layout of interpreter and AOT module instance:
- Unify the interp/AOT module instance, use the same WASMModuleInstance/
WASMMemoryInstance/WASMTableInstance data structures for both interpreter
and AOT
- Make the offset of most fields the same in module instance for both interpreter
and AOT, append memory instance structure, global data and table instances to
the end of module instance for interpreter mode (like AOT mode)
- For extra fields in WASM module instance, use WASMModuleInstanceExtra to
create a field `e` for interpreter
- Change the LLVM JIT module instance creating process, LLVM JIT uses the WASM
module and module instance same as interpreter/Fast-JIT mode. So that Fast JIT
and LLVM JIT can access the same data structures, and make it possible to
implement the Multi-tier JIT (tier-up from Fast JIT to LLVM JIT) in the future
- Unify some APIs: merge some APIs for module instance and memory instance's
related operations (only implement one copy)
Note that the AOT ABI is same, the AOT file format, AOT relocation types, how AOT
code accesses the AOT module instance and so on are kept unchanged.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1384
Memory num_bytes_per_page was incorrectly set in memory enlarging for
shared memory, we fix it. And don't set memory_data_size again for shared
memory.
Implement more socket APIs, refer to #1336 and below PRs:
- Implement wasi_addr_resolve function (#1319)
- Fix socket-api byte order issue when host/network order are the same (#1327)
- Enhance sock_addr_local syscall (#1320)
- Implement sock_addr_remote syscall (#1360)
- Add support for IPv6 in WAMR (#1411)
- Implement ns lookup allowlist (#1420)
- Implement sock_send_to and sock_recv_from system calls (#1457)
- Added http downloader and multicast socket options (#1467)
- Fix `bind()` calls to receive the correct size of `sockaddr` structure (#1490)
- Assert on correct parameters (#1505)
- Copy only received bytes from socket recv buffer into the app buffer (#1497)
Co-authored-by: Marcin Kolny <mkolny@amazon.com>
Co-authored-by: Marcin Kolny <marcin.kolny@gmail.com>
Co-authored-by: Callum Macmillan <callumimacmillan@gmail.com>
Fix two issues of building WAMR on Windows:
- The build_llvm.py script calls itself, spawning instances faster than they expire,
which makes Python3 eat up the entire RAM in a pretty short time.
- The MSVC compiler doesn't support preprocessor statements inside macro expressions.
Two places inside bh_assert() were found.
And enable classic interpreter instead fast interpreter when llvm jit is enabled,
so as to fix the issue that llvm jit cannot handle opcode drop_64/select_64.
Remove handling opcode DROP_64/SELECT_64 in loader stage
prepare_bytecode, as they are the modified opcodes of DROP/SELECT
for optimization purpose, but not the opcodes defined by spec.
Destroy Fast-JIT compiler after destroying the modules loaded by
multi-module feature, since the Fast JIT's code cache allocator may
be used by these modules. If the Fast JIT's code cache allocator was
destroyed, then runtime will fail to destroy these modules.
And fix the issue of destroying import module's memory instance.
Normalize wasm types, for the two wasm types, if their parameter types
and result types are the same, we only save one copy, so as to reduce
the footprint and simplify the type comparison in opcode CALL_INDIRECT.
And fix issue in interpreter globals_instantiate, and remove used codes.
Reserve one pointer size for fast-interp code_compiled_size: if the last opcode of
current function is to be dropped (e.g. OP_DROP), the peak memory usage will
be larger than the final code_compiled_size, we record the peak size to ensure
there won't be invalid memory access during the second traversing.
Remove some unused fields in module instance and the related codes,
which are introduced by emsdk some special mode (-DSIDE_MODULE=1),
and are not required now.
Should not clear last label's polymorphic state after current label is popped
Fix invalid func_idx check in opcode REF_FUNC
Add check when there are extra unneeded bytecodes for a wasm function
Fix dump call stack issue in interpreter introduced by hw bound check:
the call stack isn't dumped if the exception is thrown and caught by
signal handler.
And restore the wasm stack frame to the original status after calling a
wasm function.
Import WAMR Fast JIT which is a lightweight JIT with quick startup, small footprint,
relatively good performance (~40% to ~50% of LLVM JIT) and good portability.
Platforms supported: Linux, MacOS and Linux SGX.
Arch supported: x86-64.
Before resolving the module function's export in wasm_mini_loader,
"module->retain_function" need to be initialized, otherwise,
the "__new" function export will lead to abort.
issue: https://github.com/bytecodealliance/wasm-micro-runtime/issues/1332
Co-authored-by: yaozhongxiao <yaozhongxiao@bytedance.com>
Fix build script to enable hw bound check for interpreter when
AOT is disabled, so as to enable spec cases test for interp with
hw bound check. And fix the issues found.
Implement boundary check with hardware trap for interpreter on
64-bit platforms:
- To improve the performance of interpreter and Fast JIT
- To prepare for multi-tier compilation for the feature
Linux/MacOS/Windows 64-bit are enabled.
Sub module's auxiliary stack boundary and bottom may be different from
main module's counterpart, so when calling sub module, its aux stack info
should be gotten and set to exec_env firstly, or aux stack overflow and out
of bounds memory access exception may be thrown when calling sub
module's function.
Fix the issue reported in PR #1278.
Enable dump call stack to a buffer, use API
`wasm_runtime_get_call_stack_buf_size` to get the required buffer size
and use API
`wasm_runtime_dump_call_stack_to_buf` to dump call stack to a buffer
module_wasm_app.c: add return value check for wasm_runtime_call_wasm
aot_runtime.c: add return value check for aot_get_default_memory
aot_runtime.c: add return value check before calling wasm app malloc/free func
wasm_runtime_common.c: fix dead code warning in wasm_runtime_load_from_sections
aot_emit_memory.c: fix potential integer overflow issue
wasm_runtime.c: remove dead code in memory_instantiate, add assertion for globals
samples simple/gui/littlevgl: fix fields of struct sigaction initialization issue
host-tool: add return value check for sendto
Fix allocate zero size memory warning reported by wasm_runtime_malloc
when allocating the import fun pointers if the import func count is 0:
`warning: wasm_runtime_malloc with size zero`
Refine opcode br_table for classic interpreter as there may be a lot of
leb128 decoding when the br count is big:
1. Use the bytecode itself to store the decoded leb br depths if each
decoded depth can be stored with one byte
2. Create br_table cache to store the decode leb br depths if the decoded
depth cannot be stored with one byte
After the optimization, the class interpreter can access the br depths array
with index, no need to decode the leb128 again.
And fix function record_fast_op() return value unchecked issue in source
debugging feature.
Fix fault modification on data segment in wasm module which leads to
fail to instantiate wasm module next time, reported by #1115.
Co-authored-by: yangwenming <yangwenming@bytedance.com>
Fix an UBSan complaint introduced by recent change by adding more checks
to word_copy:
```
wasm_interp_fast.c:792:9: runtime error: applying zero offset to null pointer
```
Add aot relocation for ".rodata.str" symbol to support more cases
Fix some coding style issues
Fix aot block/value stack destroy issue
Refine classic/fast interpreter codes
Clear compile warning of libc_builtin_wrapper.c in 32-bit platform
Fix the potential integer overflow of const index in const space of fast interpreter,
emit i32/i64.const opcode when the const index is larger than INT32_MAX.
And add check for the function local cell num.
Fix handle OP_TABLE_COPY issue
Fix loader handle OP_BLOCK/IF/LOOP issue if type_index is larger than 256
Fix loader handle OP_GET_GLOBAL, allow to change to GET_GLOBAL_64 for
aot compiler similiar to handling OP_SET_GLOBAL
Refine loader handle OP_GET/SET/TEE_LOCAL, disable changing opcode when
source debugging is enabled, so as no need to record the change of opcode
Refine wasm_interp_interp_frame_size to reduce the wasm operand stack usage
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Remove the `const` flag for the first argument `buf` of wasm_runtime_load as
it might be modified by runtime for footprint and performance purpose, and
update the related functions and document.
Refer to [Networking API design](https://github.com/WebAssembly/WASI/issues/370)
and [feat(socket): berkeley socket API v2](https://github.com/WebAssembly/WASI/pull/459):
- Support the socket API of synchronous mode, including `socket/bind/listen/accept/send/recv/close/shutdown`,
the asynchronous mode isn't supported yet.
- Support adding `--addr-pool=<pool1,pool2,..>` argument for command line to identify the valid ip address range
- Add socket-api sample and update the document
Currently when calling wasm_runtime_call_wasm() to invoke wasm function
with externref type argument from runtime embedder, developer needs to
use wasm_externref_obj2ref() to convert externref obj into an internal ref
index firstly, which is not convenient to developer.
To align with GC feature in which all the references passed to
wasm_runtime_call_wasm() can be object pointers directly, we change the
interface of wasm_runtime_call_wasm() to allow to pass object pointer
directly for the externref argument, and refactor the related codes, update
the related samples and the document.
Refine is_xip_file check, when e_type isn't E_TYPE_XIP, just return false
and no need to go through all the other sections of the AOT file.
Refine pointer range check, convert pointer to uintptr_t type before
comparison to yield possible sanitizer pointer overflow error.