Enhance the statistic of wasm function execution time, or the performance
profiling feature:
- Add os_time_thread_cputime_us() to get the cputime of a thread,
and use it to calculate the execution time of a wasm function
- Support the statistic of the children execution time of a function,
and dump it in wasm_runtime_dump_perf_profiling
- Expose two APIs:
wasm_runtime_sum_wasm_exec_time
wasm_runtime_get_wasm_func_exec_time
And rename os_time_get_boot_microsecond to os_time_get_boot_us.
Currently, `data.drop` instruction is implemented by directly modifying the
underlying module. It breaks use cases where you have multiple instances
sharing a single loaded module. `elem.drop` has the same problem too.
This PR fixes the issue by keeping track of which data/elem segments have
been dropped by using bitmaps for each module instances separately, and
add a sample to demonstrate the issue and make the CI run it.
Also add a missing check of dropped elements to the fast-jit `table.init`.
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2735
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2772
When labels-as-values is enabled in a target which doesn't support
unaligned address access, 16-bit offset is used to store the relative
offset between two opcode labels. But it is a little small and the loader
may report "pre-compiled label offset out of range" error.
Emitting 32-bit data instead to resolve the issue: emit label address in
32-bit target and emit 32-bit relative offset in 64-bit target.
See also:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/2635
Avoid the stack traces getting mixed up together when multi-threading is enabled
by using exception_lock/unlock in dumping the call stacks.
And remove duplicated call stack dump in wasm_application.c.
Also update coding guideline CI to fix the clang-format-12 not found issue.
- Inherit shared memory from the parent instance, instead of
trying to look it up by the underlying module. The old method
works correctly only when every cluster uses different module.
- Use reference count in WASMMemoryInstance/AOTMemoryInstance
to mark whether the memory is shared or not
- Retire WASMSharedMemNode
- For atomic opcode implementations in the interpreters, use
a global lock for now
- Update the internal API users
(wasi-threads, lib-pthread, wasm_runtime_spawn_thread)
Fixes https://github.com/bytecodealliance/wasm-micro-runtime/issues/1962
We have observed a significant performance degradation after merging
https://github.com/bytecodealliance/wasm-micro-runtime/pull/1991
Instead of protecting suspend flags with a mutex, we implement the flags
as atomic variable and only use mutex when atomics are not available
on a given platform.
Allow to use `cmake -DWAMR_CONFIGURABLE_BOUNDS_CHECKS=1` to
build iwasm, and then run `iwasm --disable-bounds-checks` to disable the
memory access boundary checks.
And add two APIs:
`wasm_runtime_set_bounds_checks` and `wasm_runtime_is_bounds_checks_enabled`
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
Load memory data size in each time memory access boundary check in
multi-threading mode since it may be changed by other threads when
memory growing.
And use `memory->memory_data_size` instead of
`memory->num_bytes_per_page * memory->cur_page_count` to refine
the code.
Use the shared memory's shared_mem_lock to lock the whole atomic.wait and
atomic.notify processes, and use it for os_cond_reltimedwait and os_cond_notify,
so as to make the whole processes actual atomic operations:
the original implementation accesses the wait address with shared_mem_lock
and uses wait_node->wait_lock for os_cond_reltimedwait, which is not an atomic
operation.
And remove the unnecessary wait_map_lock and wait_lock, since the whole
processes are already locked by shared_mem_lock.
- Implement atomic.fence to ensure a proper memory synchronization order
- Destroy exec_env_singleton first in wasm/aot deinstantiation
- Change terminate other threads to wait for other threads in
wasm_exec_env_destroy
- Fix detach thread in thread_manager_start_routine
- Fix duplicated lock cluster->lock in wasm_cluster_cancel_thread
- Add lib-pthread and lib-wasi-threads compilation to Windows CI
Raising "wasi proc exit" exception, spreading it to other threads and then
clearing it in all threads may result in unexpected behavior: the sub thread
may end first, handle the "wasi proc exit" exception and clear exceptions
of other threads, including the main thread. And when main thread's
exception is cleared, it may continue to run and throw "unreachable"
exception. This also leads to some assertion failed.
Ignore exception spreading for "wasi proc exit" and don't clear exception
of other threads to resolve the issue.
And add suspend flag check after atomic wait since the atomic wait may
be notified by other thread when exception occurs.
Multiple threads generated from the same module should use the same
lock to protect the atomic operations.
Before this PR, each thread used a different lock to protect atomic
operations (e.g. atomic add), making the lock ineffective.
Fix#1958.
When a wasm module is duplicated instantiated with wasm_instance_new,
the function import info of the previous instantiation may be overwritten by
the later instantiation, which may cause unexpected behavior.
Store the function import info into the module instance to fix the issue.
Limit max_stack_cell_num/max_csp_num to be no larger than UINT16_MAX,
and don't check all_cell_num in interpreter again.
And refine some codes in interpreter.
Add a new options to control the native stack hw bound check feature:
- Besides the original option `cmake -DWAMR_DISABLE_HW_BOUND_CHECK=1/0`,
add a new option `cmake -DWAMR_DISABLE_STACK_HW_BOUND_CHECK=1/0`
- When the linear memory hw bound check is disabled, the stack hw bound check
will be disabled automatically, no matter what the input option is
- When the linear memory hw bound check is enabled, the stack hw bound check
is enabled/disabled according to the value of input option
- Besides the original option `--bounds-checks=1/0`, add a new option
`--stack-bounds-checks=1/0` for wamrc
Refer to: https://github.com/bytecodealliance/wasm-micro-runtime/issues/1677
Refactor the layout of interpreter and AOT module instance:
- Unify the interp/AOT module instance, use the same WASMModuleInstance/
WASMMemoryInstance/WASMTableInstance data structures for both interpreter
and AOT
- Make the offset of most fields the same in module instance for both interpreter
and AOT, append memory instance structure, global data and table instances to
the end of module instance for interpreter mode (like AOT mode)
- For extra fields in WASM module instance, use WASMModuleInstanceExtra to
create a field `e` for interpreter
- Change the LLVM JIT module instance creating process, LLVM JIT uses the WASM
module and module instance same as interpreter/Fast-JIT mode. So that Fast JIT
and LLVM JIT can access the same data structures, and make it possible to
implement the Multi-tier JIT (tier-up from Fast JIT to LLVM JIT) in the future
- Unify some APIs: merge some APIs for module instance and memory instance's
related operations (only implement one copy)
Note that the AOT ABI is same, the AOT file format, AOT relocation types, how AOT
code accesses the AOT module instance and so on are kept unchanged.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1384
And enable classic interpreter instead fast interpreter when llvm jit is enabled,
so as to fix the issue that llvm jit cannot handle opcode drop_64/select_64.
Normalize wasm types, for the two wasm types, if their parameter types
and result types are the same, we only save one copy, so as to reduce
the footprint and simplify the type comparison in opcode CALL_INDIRECT.
And fix issue in interpreter globals_instantiate, and remove used codes.
Fix dump call stack issue in interpreter introduced by hw bound check:
the call stack isn't dumped if the exception is thrown and caught by
signal handler.
And restore the wasm stack frame to the original status after calling a
wasm function.
Fix build script to enable hw bound check for interpreter when
AOT is disabled, so as to enable spec cases test for interp with
hw bound check. And fix the issues found.
Implement boundary check with hardware trap for interpreter on
64-bit platforms:
- To improve the performance of interpreter and Fast JIT
- To prepare for multi-tier compilation for the feature
Linux/MacOS/Windows 64-bit are enabled.
Sub module's auxiliary stack boundary and bottom may be different from
main module's counterpart, so when calling sub module, its aux stack info
should be gotten and set to exec_env firstly, or aux stack overflow and out
of bounds memory access exception may be thrown when calling sub
module's function.
Fix the issue reported in PR #1278.
Enable dump call stack to a buffer, use API
`wasm_runtime_get_call_stack_buf_size` to get the required buffer size
and use API
`wasm_runtime_dump_call_stack_to_buf` to dump call stack to a buffer
Refine opcode br_table for classic interpreter as there may be a lot of
leb128 decoding when the br count is big:
1. Use the bytecode itself to store the decoded leb br depths if each
decoded depth can be stored with one byte
2. Create br_table cache to store the decode leb br depths if the decoded
depth cannot be stored with one byte
After the optimization, the class interpreter can access the br depths array
with index, no need to decode the leb128 again.
And fix function record_fast_op() return value unchecked issue in source
debugging feature.
Fix an UBSan complaint introduced by recent change by adding more checks
to word_copy:
```
wasm_interp_fast.c:792:9: runtime error: applying zero offset to null pointer
```
Add aot relocation for ".rodata.str" symbol to support more cases
Fix some coding style issues
Fix aot block/value stack destroy issue
Refine classic/fast interpreter codes
Clear compile warning of libc_builtin_wrapper.c in 32-bit platform