Allow to use `cmake -DWAMR_CONFIGURABLE_BOUNDS_CHECKS=1` to
build iwasm, and then run `iwasm --disable-bounds-checks` to disable the
memory access boundary checks.
And add two APIs:
`wasm_runtime_set_bounds_checks` and `wasm_runtime_is_bounds_checks_enabled`
LLVM PGO (Profile-Guided Optimization) allows the compiler to better optimize code
for how it actually runs. This PR implements the AOT static PGO, and is tested on
Linux x86-64 and x86-32. The basic steps are:
1. Use `wamrc --enable-llvm-pgo -o <aot_file_of_pgo> <wasm_file>`
to generate an instrumented aot file.
2. Compile iwasm with `cmake -DWAMR_BUILD_STATIC_PGO=1` and run
`iwasm --gen-prof-file=<raw_profile_file> <aot_file_of_pgo>`
to generate the raw profile file.
3. Run `llvm-profdata merge -output=<profile_file> <raw_profile_file>`
to merge the raw profile file into the profile file.
4. Run `wamrc --use-prof-file=<profile_file> -o <aot_file> <wasm_file>`
to generate the optimized aot file.
5. Run the optimized aot_file: `iwasm <aot_file>`.
The test scripts are also added for each benchmark, run `test_pgo.sh` under
each benchmark's folder to test the AOT static pgo.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
The function has been there for long. While what it does look a bit unsafe
as it calls a function which may be not wasm-wise exported explicitly, it's
useful and widely used when implementing callback-taking APIs, including
our pthread_create's implementation.
Add APIs to help prepare the imports for the wasm-c-api `wasm_instance_new`:
- wasm_importtype_is_linked
- wasm_runtime_is_import_func_linked
- wasm_runtime_is_import_global_linked
- wasm_extern_new_empty
For wasm-c-api, developer may use `wasm_module_imports` to get the import
types info, check whether an import func/global is linked with the above API,
and ignore the linking of an import func/global with `wasm_extern_new_empty`.
Sample `wasm-c-api-import` is added and document is updated.
Enable setting running mode when executing a wasm bytecode file
- Four running modes are supported: interpreter, fast-jit, llvm-jit and multi-tier-jit
- Add APIs to set/get the default running mode of the runtime
- Add APIs to set/get the running mode of a wasm module instance
- Add running mode options for iwasm command line tool
And add size/opt level options for LLVM JIT
Add an option to pass user data to the allocator functions. It is common to
do this so that the host embedder can pass a struct as user data and access
that struct from the allocator, which gives the host embedder the ability to
do things such as track allocation statistics within the allocator.
Compile with `cmake -DWASM_MEM_ALLOC_WITH_USER_DATA=1` to enable
the option, and the allocator functions provided by the host embedder should
be like below (an extra argument `data` is added):
void *malloc(void *data, uint32 size) { .. }
void *realloc(void *data, uint32 size) { .. }
void free(void *data, void *ptr) { .. }
Signed-off-by: Andrew Chambers <ncham@amazon.com>
Create trap for error message when wasm_instance_new fails:
- Similar to [this PR](https://github.com/bytecodealliance/wasm-micro-runtime/pull/1526),
but create a wasm_trap_t to output the error msg instead of adding error_buf to the API.
- Trap will need to be deleted by the caller but is not a breaking change as it is only
created if trap is not NULL.
- Add error messages for all failure cases here, try to make them accurate but welcome
feedback for improvements.
Signed-off-by: Andrew Chambers <ncham@amazon.com>
Current SGX lib-rats wasm module hash is stored in a global buffer,
which may be overwritten if there are multiple wasm module loadings.
We move the module hash into the enclave module to resolve the issue.
And rename the SGX_IPFS macro/variable in Makefile and Enclave.edl to
make the code more consistent.
And refine the sgx-ra sample document.
Add a new options to control the native stack hw bound check feature:
- Besides the original option `cmake -DWAMR_DISABLE_HW_BOUND_CHECK=1/0`,
add a new option `cmake -DWAMR_DISABLE_STACK_HW_BOUND_CHECK=1/0`
- When the linear memory hw bound check is disabled, the stack hw bound check
will be disabled automatically, no matter what the input option is
- When the linear memory hw bound check is enabled, the stack hw bound check
is enabled/disabled according to the value of input option
- Besides the original option `--bounds-checks=1/0`, add a new option
`--stack-bounds-checks=1/0` for wamrc
Refer to: https://github.com/bytecodealliance/wasm-micro-runtime/issues/1677
Currently we initialize and destroy LLVM environment in aot_create_comp_context
and aot_destroy_comp_context, which are called in wasm_module_load/unload,
and the latter may be invoked multiple times, which leads to duplicated LLVM
initialization/destroy and may result in unexpected behaviors.
Move the LLVM init/destroy into runtime init/destroy to resolve the issue.
The host embedder may new/delete wasm-c-api engine simultaneously
in multiple threads, which requires lock for the operations. Since there
isn't one time called global init/destroy APIs provided by wasm-c-api,
we define a global lock and initialize it with thread mutex initializer if
the platform supports that, and use it to lock the operations of engine.
If the platform doesn't support thread mutex initializer, we require
developer to create the lock by himself to ensure the thread-safe of the
engine operations.
Allow to unregister (or unload) the previously registered native libs,
so that no need to restart the whole engine by using
`wasm_runtime_destroy/wasm_runtime_init`.
Refactor the layout of interpreter and AOT module instance:
- Unify the interp/AOT module instance, use the same WASMModuleInstance/
WASMMemoryInstance/WASMTableInstance data structures for both interpreter
and AOT
- Make the offset of most fields the same in module instance for both interpreter
and AOT, append memory instance structure, global data and table instances to
the end of module instance for interpreter mode (like AOT mode)
- For extra fields in WASM module instance, use WASMModuleInstanceExtra to
create a field `e` for interpreter
- Change the LLVM JIT module instance creating process, LLVM JIT uses the WASM
module and module instance same as interpreter/Fast-JIT mode. So that Fast JIT
and LLVM JIT can access the same data structures, and make it possible to
implement the Multi-tier JIT (tier-up from Fast JIT to LLVM JIT) in the future
- Unify some APIs: merge some APIs for module instance and memory instance's
related operations (only implement one copy)
Note that the AOT ABI is same, the AOT file format, AOT relocation types, how AOT
code accesses the AOT module instance and so on are kept unchanged.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1384
Implement more socket APIs, refer to #1336 and below PRs:
- Implement wasi_addr_resolve function (#1319)
- Fix socket-api byte order issue when host/network order are the same (#1327)
- Enhance sock_addr_local syscall (#1320)
- Implement sock_addr_remote syscall (#1360)
- Add support for IPv6 in WAMR (#1411)
- Implement ns lookup allowlist (#1420)
- Implement sock_send_to and sock_recv_from system calls (#1457)
- Added http downloader and multicast socket options (#1467)
- Fix `bind()` calls to receive the correct size of `sockaddr` structure (#1490)
- Assert on correct parameters (#1505)
- Copy only received bytes from socket recv buffer into the app buffer (#1497)
Co-authored-by: Marcin Kolny <mkolny@amazon.com>
Co-authored-by: Marcin Kolny <marcin.kolny@gmail.com>
Co-authored-by: Callum Macmillan <callumimacmillan@gmail.com>
Fix multi-module issue:
don't call the sub module's function with "$sub_module_name$func_name"
Fix the aot_call_function free argv1 issue
Modify some API comments in wasm_export.h
Fix the wamrc help info
Use the semantic versioning (https://semver.org) to replace the current date
versioning system, which is more general and is requested by some developers,
e.g. issue #1357.
There are three parts in the new version string:
- major. Any incompatible modification on ABIs and APIs will lead to an increment
in the value of major, which mainly includes: AOT calling conventions, AOT file
format, wasm_export.h, wasm_c_api.h, and so on.
- minor. It represents new features, including MVP/POST-MVP features, libraries,
WAMR private ones, and so one.
- patch. It represents patches.
The new version will start from 1.0.0. Update the help info and version showing for
iwasm and wamrc.
Import WAMR Fast JIT which is a lightweight JIT with quick startup, small footprint,
relatively good performance (~40% to ~50% of LLVM JIT) and good portability.
Platforms supported: Linux, MacOS and Linux SGX.
Arch supported: x86-64.
Enable dump call stack to a buffer, use API
`wasm_runtime_get_call_stack_buf_size` to get the required buffer size
and use API
`wasm_runtime_dump_call_stack_to_buf` to dump call stack to a buffer
Implement Go binding APIs of runtime, module and instance
Add sample, build scripts and update the document
Co-authored-by: venus-taibai <97893654+venus-taibai@users.noreply.github.com>
This header file is supposed to be used by user code, which is not
a part of WAMR. Usually WAMR configuration is not available there,
remove DEBUG_INTERP macro control in it.
Remove the `const` flag for the first argument `buf` of wasm_runtime_load as
it might be modified by runtime for footprint and performance purpose, and
update the related functions and document.
Refer to [Networking API design](https://github.com/WebAssembly/WASI/issues/370)
and [feat(socket): berkeley socket API v2](https://github.com/WebAssembly/WASI/pull/459):
- Support the socket API of synchronous mode, including `socket/bind/listen/accept/send/recv/close/shutdown`,
the asynchronous mode isn't supported yet.
- Support adding `--addr-pool=<pool1,pool2,..>` argument for command line to identify the valid ip address range
- Add socket-api sample and update the document
Use LLVM new pass manager for wamrc to replace the legacy pass manger,
so as to gain better performance and reduce the compilation time.
Reference links:
- https://llvm.org/docs/NewPassManager.html
- https://blog.llvm.org/posts/2021-03-26-the-new-pass-manager
And add an option to use the legacy pm mode when building wamrc:
cmake .. -DWAMR_BUILD_LLVM_LEGACY_PM=1
For JIT mode, keep it unchanged as it only runs several function passes and
using new pass manager will increase the compilation time.
And refactor the codes of applying LLVM passes.
Currently when calling wasm_runtime_call_wasm() to invoke wasm function
with externref type argument from runtime embedder, developer needs to
use wasm_externref_obj2ref() to convert externref obj into an internal ref
index firstly, which is not convenient to developer.
To align with GC feature in which all the references passed to
wasm_runtime_call_wasm() can be object pointers directly, we change the
interface of wasm_runtime_call_wasm() to allow to pass object pointer
directly for the externref argument, and refactor the related codes, update
the related samples and the document.
Refine some codes in wasm loader
Add -Wshadow to gcc compile flags and fix some variable shadowed issues
Fix function parameter/return types not checked issue
Fix fast-interp loader reserve_block_ret() not handle V128 return type issue
Fix mini loader load_table_segment_section() failed issue
Add detailed comments for argc argument in wasm_runtime_call_wasm()
Auto detect whether file is XIP file before loading module in posix like and
linux-sgx platforms, and if yes, mmap executable memory automatically to
run the XIP file.
Add document about XIP feature.
Enable test spec cases with XIP feature.
- move the wait_cond from exec_env to debug_instance, so the debug thread can be waken up by any threads
- process more general query message from debugger
- refine debug instance create/destroy mechanism
- avoid creating debug instance during module instantiating
- avoid blocking execution thread during creating debug instance
- update related documents
Enable LLVM link time optimization for AOT and enable it by default,
and provide "wamrc --disable-llvm-lto" option to disable it.
And modify the spec test script, disable it by default when testing
spec cases.
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Apply clang-format for core/iwasm/include, core/iwasm/common and
core/iwasm/aot files.
Update spec cases test script:
- Checkout latest commit of https://github.com/WebAssembly/spec
- Checkout main branch but not master of https://github.com/WebAssembly/threads
- Update wabt to latest version
And update source debugging document.
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Implement source debugging feature for classic interpreter and AOT:
- use `cmake -DWAMR_BUILD_DEBUG_INTERP=1` to enable interpreter debugging
- use `cmake -DWAMR_BUILD_DEBUG_AOT=1` to enable AOT debugging
See doc/source_debugging.md for more details.
The WASM C API now requires the use of vector types in certain apis.
Switching WAMR to use the new call signatures improves "drop in"
compilation compatibility between WAMR and other implementations
from a C-api embedding program's perspective.
* wasm_func_callback_t type has been updated to use wasm_val_vec_t
* wasm_func_callback_with_env_t type has been updated to use wasm_val_vec_t
* wasm_func_call() has been updated to use wasm_val_vec_t
* wasm_instance_new() has been updated to use wasm_extern_vec_t*
* wasm_instance_new_with_args() has been updated to use wasm_extern_vec_t*
* wasm_runtime_invoke_c_api_native() has been updated to support vector types
in native callbacks without modifying the contract with the interpreter code.
* All users of the modified functions (including samples/wasm-c-api/src/*.c)
have been appropriately updated.