Major changes:
- Public headers inside `wasi-nn/include`
- Put cmake files in `cmake` folder
- Make linux iwasm link with `${WASI_NN_LIBS}` so iwasm can enable wasi-nn
This PR attempts to search for the system libuv and use it if found instead of
downloading it. As reported in #1831, this is needed because some tools
build in a sandbox and clear the extra sources.
Move the native stack overflow check from the caller to the callee because the
former doesn't work for call_indirect and imported functions.
Make the stack usage estimation more accurate. Instead of making a guess from
the number of wasm locals in the function, use the LLVM's idea of the stack size
of each MachineFunction. The former is inaccurate because a) it doesn't reflect
optimization passes, and b) wasm locals are not the only reason to use stack.
To use the post-compilation stack usage information without requiring 2-pass
compilation or machine-code imm rewriting, introduce a global array to store
stack consumption of each functions:
For JIT, use a custom IRCompiler with an extra pass to fill the array.
For AOT, use `clang -fstack-usage` equivalent because we support external llc.
Re-implement function call stack usage estimation to reflect the real calling
conventions better. (aot_estimate_stack_usage_for_function_call)
Re-implement stack estimation logic (--enable-memory-profiling) based on the new
machinery.
Discussions: #2105.
LLVM PGO (Profile-Guided Optimization) allows the compiler to better optimize code
for how it actually runs. This PR implements the AOT static PGO, and is tested on
Linux x86-64 and x86-32. The basic steps are:
1. Use `wamrc --enable-llvm-pgo -o <aot_file_of_pgo> <wasm_file>`
to generate an instrumented aot file.
2. Compile iwasm with `cmake -DWAMR_BUILD_STATIC_PGO=1` and run
`iwasm --gen-prof-file=<raw_profile_file> <aot_file_of_pgo>`
to generate the raw profile file.
3. Run `llvm-profdata merge -output=<profile_file> <raw_profile_file>`
to merge the raw profile file into the profile file.
4. Run `wamrc --use-prof-file=<profile_file> -o <aot_file> <wasm_file>`
to generate the optimized aot file.
5. Run the optimized aot_file: `iwasm <aot_file>`.
The test scripts are also added for each benchmark, run `test_pgo.sh` under
each benchmark's folder to test the AOT static pgo.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
Add nightly (UTC time) checks with asan and ubsan, and also put gcc-4.8 build
to nightly run since we don't need to run it with every PR.
Co-authored-by: Maksim Litskevich <makslit@amazon.co.uk>
For some platforms WAMR gets compiled with `CONFIG_HAS_CLOCK_NANOSLEEP=1`,
while `clock_nanosleep` is not present at the platform, which causes compilation error.
Add check for macro `DISABLE_CLOCK_NANOSLEEP` to resolve the issue, only when
the macro isn't defined can the macro `CONFIG_HAS_CLOCK_NANOSLEEP` take effect.
Add VX delegation as an external delegation of TFLite, so that several NPU/GPU
(from VeriSilicon, NXP, Amlogic) can be controlled via WASI-NN.
Test Code can work with the X86 simulator.
Fix issue reported in #2172: wasm-c-api `wasm_func_call` may use a wrong exec_env
when multi-threading is enabled, with error "invalid exec env" reported
Fix issue reported in #2149: main instance's `c_api_func_imports` are not passed to
the counterpart of new thread's instance in wasi-threads mode
Fix issue of invalid size calculated to copy `c_api_func_imports` in pthread mode
And refactor the code to use `wasm_cluster_dup_c_api_imports` to copy the
`c_api_func_imports` to new thread for wasi-threads mode and pthread mode.
Currently, if a thread is spawned and raises an exception after the main thread
has finished, iwasm returns with success instead of returning 1 (i.e. error).
Since wasm_runtime_get_wasi_exit_code waits for all threads to finish and only
returns the wasi exit code, this PR performs the exception check again and
returns error if an exception was raised.
Since the Tensorflow library is already installed in many cases(especially in the
case of the embedded system), move the installation code to find_package.
According to the 1999 ISO C standard (C99), size_t is an unsigned integer type of
at least 16 bit (see sections 7.17 and 7.18.3), it may be uint32 in 32-bit platforms:
https://en.cppreference.com/w/cpp/types/size_t
Calling function `size_t min(size_t, size_t)` with two uint64 arguments may get
invalid result.
Co-authored-by: Georgii Rylov <godjan@amazon.co.uk>
- Translate all the opcodes of threads spec proposal for Fast JIT
- Add the atomic flag for Fast JIT load/store IRs to support atomic load/store
- Add new atomic related Fast JIT IRs and translate them in the codegen
- Add suspend_flags check in branch opcodes and before/after call function
- Modify CI to enable Fast JIT multi-threading test
Co-authored-by: TianlongLiang <tianlong.liang@intel.com>
In LLVM AOT/JIT compiler, only need to check the suspend_flags when memory is
a shared memory since the shared memory must be enabled for multi-threading,
so as not to impact the performance in non-multi-threading memory mode. Also
refine the LLVM IRs to check the suspend_flags.
And fix an issue of multi-tier jit for multi-threading, the instance of the child thread
should be removed from the instance list before it is de-instantiated.
Load memory data size in each time memory access boundary check in
multi-threading mode since it may be changed by other threads when
memory growing.
And use `memory->memory_data_size` instead of
`memory->num_bytes_per_page * memory->cur_page_count` to refine
the code.
When ref.func opcode refers to a function whose function index no smaller than
current function, the destination func should be forward-declared: it is declared
in the table element segments, or is declared in the export list.
In multi-threading, this line will eventually call `wasm_cluster_wait_for_all_except_self`:
`DEINIT_VEC(store->instances, wasm_instance_vec_delete)`
As the threads are joining they can call `wasm_interp_dump_call_stack` which tries to
use the module frames but they were already freed by this line:
`DEINIT_VEC(store->modules, wasm_module_vec_delete)`
This PR swaps the order that these are deleted so module is deleted after the instances.
Co-authored-by: Andrew Chambers <ncham@amazon.com>
Try using existing exec_env to execute wasm app's malloc/free func and
execute post instantiation functions. Create a new exec_env only when
no existing exec_env was found.
POLLRDNORM/POLLWRNORM may be not defined in uClibc, so replace them
with the equivalent POLLIN/POLLOUT.
Refer to https://www.man7.org/linux/man-pages/man2/poll.2.html
POLLRDNORM Equivalent to POLLIN
POLLWRNORM Equivalent to POLLOUT
Signed-off-by: Thomas Devoogdt <thomas.devoogdt@barco.com>
Update wasi-libc version to resolve the hang issue when running wasi-threads cases.
Implement custom sync primitives as a counterpart of `pthread_barrier_wait` to
attempt to replace pthread sync primitives since they seem to cause data races
when running with the thread sanitizer.
Use pre-created exec_env for instantiation and module_malloc/free,
use the same exec_env of the current thread to avoid potential
unexpected behavior.
And remove unnecessary shared_mem_lock in wasm_module_free,
which may cause dead lock.
Use the shared memory's shared_mem_lock to lock the whole atomic.wait and
atomic.notify processes, and use it for os_cond_reltimedwait and os_cond_notify,
so as to make the whole processes actual atomic operations:
the original implementation accesses the wait address with shared_mem_lock
and uses wait_node->wait_lock for os_cond_reltimedwait, which is not an atomic
operation.
And remove the unnecessary wait_map_lock and wait_lock, since the whole
processes are already locked by shared_mem_lock.