Fix the integer overflow issue when checking target branch depth in opcode
br_table, and fix is_32bit_type not check VALUE_TYPE_ANY issue, which may
cause wasm_loader_push_frame_offset push extra unneeded offset.
Fix wasm loader integrity checks for opcode ref.func and opcode else:
for opcode ref.func, the function must be an import, exported, or present in a
table elem segment or global initializer to be used as the operand to ref.func,
for opcode else, there must not be an else opcode previously.
Reported in #3336 and #3337.
And fix mini loader PUSH_MEM_OFFSET/POP_MEM_OFFSET macro
definitions due to the introducing of memory64 feature.
Enhance the GC subtyping checks:
- Fix issues in the type equivalence check
- Enable the recursive type subtyping check
- Add a equivalence type flag in defined types of aot file, if there is an
equivalence type before, just set it true and re-use the previous type
- Normalize the defined types for interpreter and AOT
- Enable spec test case type-equivalence.wast and type-subtyping.wast,
and enable some commented cases
- Enable set WAMR_BUILD_SANITIZER from cmake variable
- Add new API wasm_runtime_load_ex() in wasm_export.h
and wasm_module_new_ex in wasm_c_api.h
- Put aot_create_perf_map() into a separated file aot_perf_map.c
- In perf.map, function names include user specified module name
- Enhance the script to help flamegraph generations
Fix the warnings and issues reported:
- in Windows platform
- by CodeQL static code analyzing
- by Coverity static code analyzing
And update CodeQL script to build exception handling and memory features.
Adding a new cmake flag (cache variable) `WAMR_BUILD_MEMORY64` to enable
the memory64 feature, it can only be enabled on the 64-bit platform/target and
can only use software boundary check. And when it is enabled, it can support both
i32 and i64 linear memory types. The main modifications are:
- wasm loader & mini-loader: loading and bytecode validating process
- wasm runtime: memory instantiating process
- classic-interpreter: wasm code executing process
- Support memory64 memory in related runtime APIs
- Modify main function type check when it's memory64 wasm file
- Modify `wasm_runtime_invoke_native` and `wasm_runtime_invoke_native_raw` to
handle registered native function pointer argument when memory64 is enabled
- memory64 classic-interpreter spec test in `test_wamr.sh` and in CI
Currently, it supports memory64 memory wasm file that uses core spec
(including bulk memory proposal) opcodes and threads opcodes.
ps.
https://github.com/bytecodealliance/wasm-micro-runtime/issues/3091https://github.com/bytecodealliance/wasm-micro-runtime/pull/3240https://github.com/bytecodealliance/wasm-micro-runtime/pull/3260
The PR #3259 reverted PR #3192, it fixes#3210 but makes #3170 failed again.
The workaround is that we should update `ctx->dynamic_offset` only for opcode br
and should not update it for opcode br_if. This PR fixes both issue #3170 and #3210.
Should not update `ctx->dynamic_offset` in emit_br_info, since the `Part e` only
sets the dst offsets, the operand stack should not be changed, e.g., the stack
operands are to be used by the opcodes followed by `br_if` opcode.
Reported in https://github.com/bytecodealliance/wasm-micro-runtime/issues/3210.
Fix the errors reported in the sanitizer test of nightly run CI.
When the stack is in polymorphic state, the stack operands may be changed
after pop and push operations (e.g. stack is empty but pop op can succeed
in polymorphic, and the push op can push a new operand to stack), this may
impact the following checks to other target blocks of the br_table opcode.
Implement the GC (Garbage Collection) feature for interpreter mode,
AOT mode and LLVM-JIT mode, and support most features of the latest
spec proposal, and also enable the stringref feature.
Use `cmake -DWAMR_BUILD_GC=1/0` to enable/disable the feature,
and `wamrc --enable-gc` to generate the AOT file with GC supported.
And update the AOT file version from 2 to 3 since there are many AOT
ABI breaks, including the changes of AOT file format, the changes of
AOT module/memory instance layouts, the AOT runtime APIs for the
AOT code to invoke and so on.
This PR adds the initial support for WASM exception handling:
* Inside the classic interpreter only:
* Initial handling of Tags
* Initial handling of Exceptions based on W3C Exception Proposal
* Import and Export of Exceptions and Tags
* Add `cmake -DWAMR_BUILD_EXCE_HANDLING=1/0` option to enable/disable
the feature, and by default it is disabled
* Update the wamr-test-suites scripts to test the feature
* Additional CI/CD changes to validate the exception spec proposal cases
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1884587513f3c68bebfe9ad759bccdfed8
Signed-off-by: Ricardo Aguilar <ricardoaguilar@siemens.com>
Co-authored-by: Chris Woods <chris.woods@siemens.com>
Co-authored-by: Rene Ermler <rene.ermler@siemens.com>
Co-authored-by: Trenner Thomas <trenner.thomas@siemens.com>
Allow to invoke the quick call entry wasm_runtime_quick_invoke_c_api_import to
call the wasm-c-api import functions to speedup the calling process, which reduces
the data copying.
Use `wamrc --invoke-c-api-import` to generate the optimized AOT code, and set
`jit_options->quick_invoke_c_api_import` true in wasm_engine_new when LLVM JIT
is enabled.
In some scenarios there may be lots of callings to AOT/JIT functions from the
host embedder, which expects good performance for the calling process, while
in the current implementation, runtime calls the wasm_runtime_invoke_native
to prepare the array of registers and stacks for the invokeNative assemble code,
and the latter then puts the elements in the array to physical registers and
native stacks and calls the AOT/JIT function, there may be many data copying
and handlings which impact the performance.
This PR registers some quick AOT/JIT entries for some simple wasm signatures,
and let runtime call the entry to directly invoke the AOT/JIT function instead of
calling wasm_runtime_invoke_native, which speedups the calling process.
We may extend the mechanism next to allow the developer to register his quick
AOT/JIT entries to speedup the calling process of invoking the AOT/JIT functions
for some specific signatures.
And refactor the original perf support
- use WAMR_BUILD_LINUX_PERF as the cmake compilation control
- use WASM_ENABLE_LINUX_PERF as the compiler macro
- use `wamrc --enable-linux-perf` to generate aot file which contains fp operations
- use `iwasm --enable-linux-perf` to create perf map for `perf record`
- Fix op_br_table arity type check when the dest block is loop block
- Fix op_drop issue when the stack is polymorphic and it is to drop
an ANY type value in the stack
When labels-as-values is enabled in a target which doesn't support
unaligned address access, 16-bit offset is used to store the relative
offset between two opcode labels. But it is a little small and the loader
may report "pre-compiled label offset out of range" error.
Emitting 32-bit data instead to resolve the issue: emit label address in
32-bit target and emit 32-bit relative offset in 64-bit target.
See also:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/2635
`wasm_loader_push_pop_frame_offset` may pop n operands by using
`loader_ctx->stack_cell_num` to check whether the operand can be
popped or not. While `loader_ctx->stack_cell_num` is updated in the
later `wasm_loader_push_pop_frame_ref`, the check may fail if the stack
is in polymorphic state and lead to `ctx->frame_offset` underflow.
Fix issue #2577 and #2586.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
When ref.func opcode refers to a function whose function index no smaller than
current function, the destination func should be forward-declared: it is declared
in the table element segments, or is declared in the export list.
Multiple threads generated from the same module should use the same
lock to protect the atomic operations.
Before this PR, each thread used a different lock to protect atomic
operations (e.g. atomic add), making the lock ineffective.
Fix#1958.
Enable setting running mode when executing a wasm bytecode file
- Four running modes are supported: interpreter, fast-jit, llvm-jit and multi-tier-jit
- Add APIs to set/get the default running mode of the runtime
- Add APIs to set/get the running mode of a wasm module instance
- Add running mode options for iwasm command line tool
And add size/opt level options for LLVM JIT
Should use import_function_count but not import_count to calculate
the func_index in handle_name_section when custom name section
feature is enabled.
And clear the compile warnings of mini loader.
Implement 2-level Multi-tier JIT engine: tier-up from Fast JIT to LLVM JIT to
get quick cold startup by Fast JIT and better performance by gradually
switching to LLVM JIT when the LLVM JIT functions are compiled by the
backend threads.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1302