For shared memory, the max memory size must be defined in advanced. Re-allocation
for growing memory can't be used as it might change the base address, therefore when
OS_ENABLE_HW_BOUND_CHECK is enabled the memory is mmaped, and if the flag is
disabled, the memory is allocated. This change introduces a flag that allows users to use
mmap for reserving memory address space even if the OS_ENABLE_HW_BOUND_CHECK
is disabled.
Currently, `data.drop` instruction is implemented by directly modifying the
underlying module. It breaks use cases where you have multiple instances
sharing a single loaded module. `elem.drop` has the same problem too.
This PR fixes the issue by keeping track of which data/elem segments have
been dropped by using bitmaps for each module instances separately, and
add a sample to demonstrate the issue and make the CI run it.
Also add a missing check of dropped elements to the fast-jit `table.init`.
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2735
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2772
Support muti-module for AOT mode, currently only implement the
multi-module's function import feature for AOT, the memory/table/
global import are not implemented yet.
And update wamr-test-suites scripts, multi-module sample and some
CIs accordingly.
Add simple infrastructure to add more unit tests in the future. At the moment tests
are only executed on Linux, but can be extended to other platforms if needed.
Use https://github.com/google/googletest/ as a framework.
- Update lldb patch due to swig was upgraded to 4.1 in macos
- Export LD_LIBRARY_PATH for searching libpython3.10.so when validating wamr-lldb
in Ubuntu-20.04
- Rename lldb-wasm.patch to lldb_wasm.path
We need to apply some bug fixes that were merged to wasi-libc because wasi-sdk-20
is about half a year old.
It is a temporary solution and the code will be removed when wasi-sdk 21 is released.
We need to make a test that runs longer than the tests we had before to check
some problems that might happen after running for some time (e.g. memory
corruption or something else).
This PR adds tests for #2219 by changing the `compilation_on_android_ubuntu.yml` workflow.
The first run will take about two hours, since LLDB is built from scratch. Later, the build is
cached and the whole job should not take more than three minutes.
Core of the PR is an integration test that boots up vscode and lets it debug a test WASM file.
Fixes#2267.
This PR doesn't decrease the coverage, because every job is tested either per PR or
nightly run (instead of 2 times as it was before). Actually, it even increases it because
Android is tested with Ubuntu 20 now which was disabled before.
Add nightly (UTC time) checks with asan and ubsan, and also put gcc-4.8 build
to nightly run since we don't need to run it with every PR.
Co-authored-by: Maksim Litskevich <makslit@amazon.co.uk>
- Translate all the opcodes of threads spec proposal for Fast JIT
- Add the atomic flag for Fast JIT load/store IRs to support atomic load/store
- Add new atomic related Fast JIT IRs and translate them in the codegen
- Add suspend_flags check in branch opcodes and before/after call function
- Modify CI to enable Fast JIT multi-threading test
Co-authored-by: TianlongLiang <tianlong.liang@intel.com>
In #1928 we added support for GCC 4.8 but we don't continuously test if it's
working. This PR added a GitHub actions job to test compilation on GCC 4.8
for interpreters and Fast JIT (LLVM JIT/AOT might be added in the future).
The compilation is done using ubuntu 14.04 image as that's the simplest way
to get GCC 4.8 compiler. The job only compiles the code but does not run any
tests.
Update wasi-libc version to resolve the hang issue when running wasi-threads cases.
Implement custom sync primitives as a counterpart of `pthread_barrier_wait` to
attempt to replace pthread sync primitives since they seem to cause data races
when running with the thread sanitizer.
`wasi-sdk-20` pre-release can be used to avoid building `wasi-libc` to enable threads.
It's not possible to use `wasi-sdk-20` pre-release on Ubuntu 20.04 because of
incompatibility with the glibc version:
```bash
/opt/wasi-sdk/bin/clang: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.34' not found
(required by /opt/wasi-sdk/bin/clang)
```
- Add timeout to CI WASI tests to avoid keeping CI node busy in case of
deadlock in thread tests
- Update wasi-testsuite commit used, after fix in wasi-threads proposal
https://github.com/WebAssembly/wasi-threads/pull/40
- CMakeLists.txt: add lib_export.h to install list
- Fast JIT: enlarge spill cache size to enable several standalone cases
when hw bound check is disabled
- Thread manager: wasm_cluster_exit_thread may destroy an invalid
exec_env->module_inst when exec_env was destroyed before
- samples/socket-api: fix failure to run timeout_client.wasm
- enhance CI build wasi-libc and sample/wasm-c-api-imports CMakeLlist.txt
Upgrade the version of related toolkits:
- upgrade llvm to 15.0
- upgrade wasi-sdk to 19.0
- upgrade emsdk to 3.1.28
- upgrade wabt to 1.0.31
- upgrade binaryen to 111
And upgrade the CI scripts, sample workload build scripts, Dockerfiles, and documents.
The original CI didn't actually run wasi test suite for x86-32 since the `TEST_ON_X86_32=true`
isn't written into $GITHUB_ENV.
And refine the error output when failed to link import global.
Add CIs to enable the release process of a new version of WAMR,
and build and publish the binary files when a version is released,
including iwasm, wamrc, lldb, vscode-extension and wamr-ide for
Ubuntu-20.04, Ubuntu-22.04 and MacOS.
And refine the CIs to test spec cases.
Refactor LLVM JIT for some purposes:
- To simplify the source code of JIT compilation
- To simplify the JIT modes
- To align with LLVM latest changes
- To prepare for the Multi-tier JIT compilation, refer to #1302
The changes mainly include:
- Remove the MCJIT mode, replace it with ORC JIT eager mode
- Remove the LLVM legacy pass manager (only keep the LLVM new pass manager)
- Change the lazy mode's LLVM module/function binding:
change each function in an individual LLVM module into all functions in a single LLVM module
- Upgraded ORC JIT to ORCv2 JIT to enable lazy compilation
Refer to #1468
This PR integrates an Intel SGX feature called Intel Protection File System Library (IPFS)
into the runtime to create, operate and delete files inside the enclave, while guaranteeing
the confidentiality and integrity of the data persisted. IPFS can be referred to here:
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html
Introduce a cmake variable `WAMR_BUILD_SGX_IPFS`, when enabled, the files interaction
API of WASI will leverage IPFS, instead of the regular POSIX OCALLs. The implementation
has been written with light changes to sgx platform layer, so all the security aspects
WAMR relies on are conserved.
In addition to this integration, the following changes have been made:
- The CI workflow has been adapted to test the compilation of the runtime and sample
with the flag `WAMR_BUILD_SGX_IPFS` set to true
- Introduction of a new sample that demonstrates the interaction of the files (called `file`),
- Documentation of this new feature
Import WAMR Fast JIT which is a lightweight JIT with quick startup, small footprint,
relatively good performance (~40% to ~50% of LLVM JIT) and good portability.
Platforms supported: Linux, MacOS and Linux SGX.
Arch supported: x86-64.