When thread manager is enabled, the aux stack of exec_env may be allocated
by wasm_cluster_allocate_aux_stack or disabled by setting aux_stack_bottom
as UINTPTR_MAX directly. For the latter, no need to free it.
And fix an issue when paring `--gc-heap-size=n` argument for iwasm, and
fix a variable shadowed warning in fast-jit.
This PR adds a max_memory_pages parameter to module instantiation APIs,
to allow overriding the max memory defined in the WASM module.
Sticking to the max memory defined in the module is quite limiting when
using shared memory in production. If targeted devices have different
memory constraints, many wasm files have to be generated with different
max memory values. And device constraints may not be known in advance.
Being able to set the max memory value during module instantiation allows
to reuse the same wasm module, e.g. by retrying instantiation with different
max memory value.
Possible alternatives:
* Make wasm_cluster_destroy_spawned_exec_env take two exec_env.
One for wasm execution and another to specify the target to destroy.
* Make execute functions to switch exec_env as briefly discussed in
https://github.com/bytecodealliance/wasm-micro-runtime/pull/2047
It seems that some users want to wrap rather large chunk of code
with wasm_runtime_begin_blocking_op/wasm_runtime_end_blocking_op.
If the wrapped code happens to have a call to
e.g. wasm_runtime_spawn_exec_env, WASM_SUSPEND_FLAG_BLOCKING is
inherited to the child exec_env and it may cause unexpected behaviors.
Enhance the statistic of wasm function execution time, or the performance
profiling feature:
- Add os_time_thread_cputime_us() to get the cputime of a thread,
and use it to calculate the execution time of a wasm function
- Support the statistic of the children execution time of a function,
and dump it in wasm_runtime_dump_perf_profiling
- Expose two APIs:
wasm_runtime_sum_wasm_exec_time
wasm_runtime_get_wasm_func_exec_time
And rename os_time_get_boot_microsecond to os_time_get_boot_us.
When using the wasm-c-api and there's a trap, `wasm_func_call()` returns
a `wasm_trap_t *` object. No matter which thread crashes, the trap contains
the stack frames of the main thread.
With this PR, when there's an exception, the stack frames of the thread
where the exception occurs are stored into the thread cluster.
`wasm_func_call()` can then return those stack frames.
Send a signal whose handler is no-op to a blocking thread to wake up
the blocking syscall with either EINTR equivalent or partial success.
Unlike the approach taken in the `dev/interrupt_block_insn` branch (that is,
signal + longjmp similarly to `OS_ENABLE_HW_BOUND_CHECK`), this PR
does not use longjmp because:
* longjmp from signal handler doesn't work on nuttx
refer to https://github.com/apache/nuttx/issues/10326
* the singal+longjmp approach may be too difficult for average programmers
who might implement host functions to deal with
See also https://github.com/bytecodealliance/wasm-micro-runtime/issues/1910
Add API wasm_runtime_terminate to terminate a module instance
by setting "terminated by user" exception to the module instance.
And update the product-mini of posix platforms.
Note: this doesn't work for some situations like blocking system calls.
Introduce module instance context APIs which can set one or more contexts created
by the embedder for a wasm module instance:
```C
wasm_runtime_create_context_key
wasm_runtime_destroy_context_key
wasm_runtime_set_context
wasm_runtime_set_context_spread
wasm_runtime_get_context
```
And make libc-wasi use it and set wasi context as the first context bound to the wasm
module instance.
Also add samples.
Refer to https://github.com/bytecodealliance/wasm-micro-runtime/issues/2460.
While wasi proc exit is not a real trap, what the runtime does on it is mostly same as
real traps. That is, kill the siblings threads and represent the exit/trap as the result of
the "process" to the user api. There seems no reason to distinguish it from real traps
here.
Note that:
- The target thread either doesn't care the specific exception type or ignore wasi
proc exit by themselves. (clear_wasi_proc_exit_exception)
- clear_wasi_proc_exit_exception only clears local exception.
- Inherit shared memory from the parent instance, instead of
trying to look it up by the underlying module. The old method
works correctly only when every cluster uses different module.
- Use reference count in WASMMemoryInstance/AOTMemoryInstance
to mark whether the memory is shared or not
- Retire WASMSharedMemNode
- For atomic opcode implementations in the interpreters, use
a global lock for now
- Update the internal API users
(wasi-threads, lib-pthread, wasm_runtime_spawn_thread)
Fixes https://github.com/bytecodealliance/wasm-micro-runtime/issues/1962
We have observed a significant performance degradation after merging
https://github.com/bytecodealliance/wasm-micro-runtime/pull/1991
Instead of protecting suspend flags with a mutex, we implement the flags
as atomic variable and only use mutex when atomics are not available
on a given platform.
Fix issue reported in #2172: wasm-c-api `wasm_func_call` may use a wrong exec_env
when multi-threading is enabled, with error "invalid exec env" reported
Fix issue reported in #2149: main instance's `c_api_func_imports` are not passed to
the counterpart of new thread's instance in wasi-threads mode
Fix issue of invalid size calculated to copy `c_api_func_imports` in pthread mode
And refactor the code to use `wasm_cluster_dup_c_api_imports` to copy the
`c_api_func_imports` to new thread for wasi-threads mode and pthread mode.
Use pre-created exec_env for instantiation and module_malloc/free,
use the same exec_env of the current thread to avoid potential
unexpected behavior.
And remove unnecessary shared_mem_lock in wasm_module_free,
which may cause dead lock.
- Remove notify_stale_threads_on_exception and change atomic.wait
to be interruptible by keep waiting and checking every one second,
like the implementation of poll_oneoff in libc-wasi
- Wait all other threads exit and then get wasi exit_code to avoid
getting invalid value
- Inherit suspend_flags of parent thread while creating new thread to
avoid terminated flag isn't set for new thread
- Fix wasi-threads test case update_shared_data_and_alloc_heap
- Add "Lib wasi-threads enabled" prompt for cmake
- Fix aot get exception, use aot_copy_exception instead
- Implement atomic.fence to ensure a proper memory synchronization order
- Destroy exec_env_singleton first in wasm/aot deinstantiation
- Change terminate other threads to wait for other threads in
wasm_exec_env_destroy
- Fix detach thread in thread_manager_start_routine
- Fix duplicated lock cluster->lock in wasm_cluster_cancel_thread
- Add lib-pthread and lib-wasi-threads compilation to Windows CI
In wasm_cluster_create_thread, the new_exec_env is added into the cluster's
exec_env list before the thread is created, so other threads can access the
fields of new_exec_env once the cluster->lock is unlocked, while the
new_exec_env's handle is set later inside the thread routine. This may result
in the new_exec_env's handle be invalidly accessed by other threads.
- CMakeLists.txt: add lib_export.h to install list
- Fast JIT: enlarge spill cache size to enable several standalone cases
when hw bound check is disabled
- Thread manager: wasm_cluster_exit_thread may destroy an invalid
exec_env->module_inst when exec_env was destroyed before
- samples/socket-api: fix failure to run timeout_client.wasm
- enhance CI build wasi-libc and sample/wasm-c-api-imports CMakeLlist.txt
Raising "wasi proc exit" exception, spreading it to other threads and then
clearing it in all threads may result in unexpected behavior: the sub thread
may end first, handle the "wasi proc exit" exception and clear exceptions
of other threads, including the main thread. And when main thread's
exception is cleared, it may continue to run and throw "unreachable"
exception. This also leads to some assertion failed.
Ignore exception spreading for "wasi proc exit" and don't clear exception
of other threads to resolve the issue.
And add suspend flag check after atomic wait since the atomic wait may
be notified by other thread when exception occurs.
Fix issues in the libc-wasi `poll_oneoff` when thread manager is enabled:
- The exception of a thread may be cleared when other thread runs into
`proc_exit` and then calls `clear_wasi_proc_exit_exception`, so should not
use `wasm_runtime_get_exception` to check whether an exception was
thrown, use `wasm_cluster_is_thread_terminated` instead
- We divided one time poll_oneoff into many times poll_oneoff to check
the exception to avoid long time waiting in previous PR, but if all events
returned by one time poll are all waiting events, we need to continue to
wait but not return directly.
Follow-up on #1951. Tested with multiple timeout values, with and without
interruption and measured the time spent sleeping.
Destroy child thread's exec_env before destroying its module instance and
add the process into cluster's lock to avoid possible data race: if exec_env
is removed from custer's exec_env_list and destroyed later, the main thread
may not wait it and start to destroy the wasm runtime, and the destroying
of the sub thread's exec_env may free or overread/written an destroyed or
re-initialized resource.
And fix an issue in wasm_cluster_cancel_thread.
This syscall doesn't need allocating stack or TLS and it's expected from the application
to do that instead. E.g. WASI-libc already does this for `pthread_create`.
Also fix some of the examples to allocate memory for stack and not use stack before
the stack pointer is set to a correct value.
Because stack grows from high address towards low address, the value
returned by malloc is the end of the stack, not top of the stack. The top
of the stack is the end of the allocated space (i.e. address returned by
malloc + cluster size).
Refer to #1790.
Change main thread hangs when encounter debugger encounters error to
main thread exits when debugger encounters error
Change main thread blocks when debugger detaches to
main thread continues executing when debugger detaches, and main thread
exits normally when finishing executing
If WASM app has called pthread_detach() to detach a thread, it will be detached again
when thread exits. Attempting to detach an already detached thread may result in crash
in musl-libc. This patch fixes it.