Add macro WASM_ENABLE_WORD_ALING_READ to enable reading
1/2/4 and n bytes data from vram buffer, which requires 4-byte addr
alignment reading.
Eliminate XIP AOT relocations related to the below ones:
i32_div_u, f32_min, f32_max, f32_ceil, f32_floor, f32_trunc, f32_rint
Change wasm-c-api default log level to output less logs by default:
- For debug mode, change log level from 5 to 4
- For release mode, change log level from 3 to 2
The host embedder may new/delete wasm-c-api engine simultaneously
in multiple threads, which requires lock for the operations. Since there
isn't one time called global init/destroy APIs provided by wasm-c-api,
we define a global lock and initialize it with thread mutex initializer if
the platform supports that, and use it to lock the operations of engine.
If the platform doesn't support thread mutex initializer, we require
developer to create the lock by himself to ensure the thread-safe of the
engine operations.
Allow to unregister (or unload) the previously registered native libs,
so that no need to restart the whole engine by using
`wasm_runtime_destroy/wasm_runtime_init`.
Refactor the layout of interpreter and AOT module instance:
- Unify the interp/AOT module instance, use the same WASMModuleInstance/
WASMMemoryInstance/WASMTableInstance data structures for both interpreter
and AOT
- Make the offset of most fields the same in module instance for both interpreter
and AOT, append memory instance structure, global data and table instances to
the end of module instance for interpreter mode (like AOT mode)
- For extra fields in WASM module instance, use WASMModuleInstanceExtra to
create a field `e` for interpreter
- Change the LLVM JIT module instance creating process, LLVM JIT uses the WASM
module and module instance same as interpreter/Fast-JIT mode. So that Fast JIT
and LLVM JIT can access the same data structures, and make it possible to
implement the Multi-tier JIT (tier-up from Fast JIT to LLVM JIT) in the future
- Unify some APIs: merge some APIs for module instance and memory instance's
related operations (only implement one copy)
Note that the AOT ABI is same, the AOT file format, AOT relocation types, how AOT
code accesses the AOT module instance and so on are kept unchanged.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1384
Initial integration of WASI-NN based on #1225:
- Implement the library core/iwasm/libraries/wasi-nn
- Support TensorFlow, CPU, F32 at the first stage
- Add cmake variable `-DWAMR_BUILD_WASI_NN`
- Add test case based on Docker image and update document
Refer to #1573
Implement more socket APIs, refer to #1336 and below PRs:
- Implement wasi_addr_resolve function (#1319)
- Fix socket-api byte order issue when host/network order are the same (#1327)
- Enhance sock_addr_local syscall (#1320)
- Implement sock_addr_remote syscall (#1360)
- Add support for IPv6 in WAMR (#1411)
- Implement ns lookup allowlist (#1420)
- Implement sock_send_to and sock_recv_from system calls (#1457)
- Added http downloader and multicast socket options (#1467)
- Fix `bind()` calls to receive the correct size of `sockaddr` structure (#1490)
- Assert on correct parameters (#1505)
- Copy only received bytes from socket recv buffer into the app buffer (#1497)
Co-authored-by: Marcin Kolny <mkolny@amazon.com>
Co-authored-by: Marcin Kolny <marcin.kolny@gmail.com>
Co-authored-by: Callum Macmillan <callumimacmillan@gmail.com>
Fix multi-module issue:
don't call the sub module's function with "$sub_module_name$func_name"
Fix the aot_call_function free argv1 issue
Modify some API comments in wasm_export.h
Fix the wamrc help info
Destroy Fast-JIT compiler after destroying the modules loaded by
multi-module feature, since the Fast JIT's code cache allocator may
be used by these modules. If the Fast JIT's code cache allocator was
destroyed, then runtime will fail to destroy these modules.
And fix the issue of destroying import module's memory instance.
Use the semantic versioning (https://semver.org) to replace the current date
versioning system, which is more general and is requested by some developers,
e.g. issue #1357.
There are three parts in the new version string:
- major. Any incompatible modification on ABIs and APIs will lead to an increment
in the value of major, which mainly includes: AOT calling conventions, AOT file
format, wasm_export.h, wasm_c_api.h, and so on.
- minor. It represents new features, including MVP/POST-MVP features, libraries,
WAMR private ones, and so one.
- patch. It represents patches.
The new version will start from 1.0.0. Update the help info and version showing for
iwasm and wamrc.
Remove some unused fields in module instance and the related codes,
which are introduced by emsdk some special mode (-DSIDE_MODULE=1),
and are not required now.
Add a new option WAMR_BUILD_STACK_GUARD_SIZE to set the custom
stack guard size. For most RTOS systems, we use the native stack base
address as the check boundary which may be not safe as POSIX based
systems (like Linux).
ASSERT_NOT_IMPLEMENTED is bh_assert, which might be no-op.
in that case, it's better to fall back to the "default" case,
which reports an error properly.
Import WAMR Fast JIT which is a lightweight JIT with quick startup, small footprint,
relatively good performance (~40% to ~50% of LLVM JIT) and good portability.
Platforms supported: Linux, MacOS and Linux SGX.
Arch supported: x86-64.
Fix build script to enable hw bound check for interpreter when
AOT is disabled, so as to enable spec cases test for interp with
hw bound check. And fix the issues found.
Implement boundary check with hardware trap for interpreter on
64-bit platforms:
- To improve the performance of interpreter and Fast JIT
- To prepare for multi-tier compilation for the feature
Linux/MacOS/Windows 64-bit are enabled.
When using clang compiler, the f32/f64 return value might be
invalid when calling invokeNative asm code. Declare the return
type of invokeNative as void, and set volatile for the converted
function pointers to resolve the issue.
Enable dump call stack to a buffer, use API
`wasm_runtime_get_call_stack_buf_size` to get the required buffer size
and use API
`wasm_runtime_dump_call_stack_to_buf` to dump call stack to a buffer
Implement Go binding APIs of runtime, module and instance
Add sample, build scripts and update the document
Co-authored-by: venus-taibai <97893654+venus-taibai@users.noreply.github.com>
Automatically dump memory/performance profiling data in
wasm_application_execute_main and wasm_application_execute_func when
the related feature is enabled.
And remove unused aot_compile_wasm_file func declaration in aot_compiler.h.
wasm_c_api.c: add more checks, fix LOG_WARNING invalid specifier
aot_emit_aot_file: fix strncpy max size length to copy
posix.c: fix potential socket not close issue
wasm-c-api samples: add return value checks for fseek/ftell
cJSON.c: remove dead code
module_wasm_app.c: add return value check for wasm_runtime_call_wasm
aot_runtime.c: add return value check for aot_get_default_memory
aot_runtime.c: add return value check before calling wasm app malloc/free func
wasm_runtime_common.c: fix dead code warning in wasm_runtime_load_from_sections
aot_emit_memory.c: fix potential integer overflow issue
wasm_runtime.c: remove dead code in memory_instantiate, add assertion for globals
samples simple/gui/littlevgl: fix fields of struct sigaction initialization issue
host-tool: add return value check for sendto
Add assertion for BH_MALLOC/BH_FREE in wasm_runtime_common.c,
when building runtime, the BH_MALLOC/BH_FREE macros should be
defined as wasm_runtime_malloc/wasm_runtime_free.