mirror of
https://github.com/bytecodealliance/wasm-micro-runtime.git
synced 2025-02-07 07:25:12 +00:00
![]() # Change the data type representing linear memory address from u32 to u64 ## APIs signature changes - (Export)wasm_runtime_module_malloc - wasm_module_malloc - wasm_module_malloc_internal - aot_module_malloc - aot_module_malloc_internal - wasm_runtime_module_realloc - wasm_module_realloc - wasm_module_realloc_internal - aot_module_realloc - aot_module_realloc_internal - (Export)wasm_runtime_module_free - wasm_module_free - wasm_module_free_internal - aot_module_malloc - aot_module_free_internal - (Export)wasm_runtime_module_dup_data - wasm_module_dup_data - aot_module_dup_data - (Export)wasm_runtime_validate_app_addr - (Export)wasm_runtime_validate_app_str_addr - (Export)wasm_runtime_validate_native_addr - (Export)wasm_runtime_addr_app_to_native - (Export)wasm_runtime_addr_native_to_app - (Export)wasm_runtime_get_app_addr_range - aot_set_aux_stack - aot_get_aux_stack - wasm_set_aux_stack - wasm_get_aux_stack - aot_check_app_addr_and_convert, wasm_check_app_addr_and_convert and jit_check_app_addr_and_convert - wasm_exec_env_set_aux_stack - wasm_exec_env_get_aux_stack - wasm_cluster_create_thread - wasm_cluster_allocate_aux_stack - wasm_cluster_free_aux_stack ## Data structure changes - WASMModule and AOTModule - field aux_data_end, aux_heap_base and aux_stack_bottom - WASMExecEnv - field aux_stack_boundary and aux_stack_bottom - AOTCompData - field aux_data_end, aux_heap_base and aux_stack_bottom - WASMMemoryInstance(AOTMemoryInstance) - field memory_data_size and change __padding to is_memory64 - WASMModuleInstMemConsumption - field total_size and memories_size - WASMDebugExecutionMemory - field start_offset and current_pos - WASMCluster - field stack_tops ## Components that are affected by the APIs and data structure changes - libc-builtin - libc-emcc - libc-uvwasi - libc-wasi - Python and Go Language Embedding - Interpreter Debug engine - Multi-thread: lib-pthread, wasi-threads and thread manager |
||
---|---|---|
.. | ||
cmake | ||
external | ||
include | ||
src | ||
test | ||
.gitignore | ||
README.md |
WASI-NN
How to use
Enable WASI-NN in the WAMR by spefiying it in the cmake building configuration as follows,
set (WAMR_BUILD_WASI_NN 1)
The definition of the functions provided by WASI-NN is in the header file core/iwasm/libraries/wasi-nn/wasi_nn.h
.
By only including this file in your WASM application you will bind WASI-NN into your module.
Tests
To run the tests we assume that the current directory is the root of the repository.
Build the runtime
Build the runtime image for your execution target type.
EXECUTION_TYPE
can be:
cpu
nvidia-gpu
vx-delegate
tpu
EXECUTION_TYPE=cpu
docker build -t wasi-nn-${EXECUTION_TYPE} -f core/iwasm/libraries/wasi-nn/test/Dockerfile.${EXECUTION_TYPE} .
Build wasm app
docker build -t wasi-nn-compile -f core/iwasm/libraries/wasi-nn/test/Dockerfile.compile .
docker run -v $PWD/core/iwasm/libraries/wasi-nn:/wasi-nn wasi-nn-compile
Run wasm app
If all the tests have run properly you will the the following message in the terminal,
Tests: passed!
- CPU
docker run \
-v $PWD/core/iwasm/libraries/wasi-nn/test:/assets \
-v $PWD/core/iwasm/libraries/wasi-nn/test/models:/models \
wasi-nn-cpu \
--dir=/ \
--env="TARGET=cpu" \
/assets/test_tensorflow.wasm
- (NVIDIA) GPU
- Requirements:
docker run \
--runtime=nvidia \
-v $PWD/core/iwasm/libraries/wasi-nn/test:/assets \
-v $PWD/core/iwasm/libraries/wasi-nn/test/models:/models \
wasi-nn-nvidia-gpu \
--dir=/ \
--env="TARGET=gpu" \
/assets/test_tensorflow.wasm
- vx-delegate for NPU (x86 simulator)
docker run \
-v $PWD/core/iwasm/libraries/wasi-nn/test:/assets \
wasi-nn-vx-delegate \
--dir=/ \
--env="TARGET=gpu" \
/assets/test_tensorflow_quantized.wasm
- (Coral) TPU
- Requirements:
docker run \
--privileged \
--device=/dev/bus/usb:/dev/bus/usb \
-v $PWD/core/iwasm/libraries/wasi-nn/test:/assets \
wasi-nn-tpu \
--dir=/ \
--env="TARGET=tpu" \
/assets/test_tensorflow_quantized.wasm
What is missing
Supported:
- Graph encoding:
tensorflowlite
. - Execution target:
cpu
,gpu
andtpu
. - Tensor type:
fp32
.