wasm-micro-runtime/core/iwasm/fast-jit/jit_ir.h
liang.he c93508939a
Lock register to avoid spilling it out by register allocator (#1188)
In one instruction, if one or multiple operands tending to lock some
hardware registers in IR phase, like EAX, EDX for DIV, ECX for SHIFT,
it leads to two known cases.

case 1: allocate VOID

`SHRU i250,i249,i3`. if pr_3 was allocated to vr_249 first, incoming
allocation of vr_3 leads a spill out of `vr_249` and clear the value
of `vr->hreg` of vr_249. When applying allocation result in FOREACH
in L732, a NULL will be assigned to.

case 2: unexpected spill out

`DIV_U i1,i1,i44`.  if allocation of vr_44 needs to spill out one
hardware register, there is a chance that `hr_4` will be selected.
If it happens, codegen will operate EDX and overwrite vr_44 value.

The reason of how `hr_4` will be spilled out is a hidden bug that
both information of `rc->hreg[]` and `rc->vreg` can be transfered
from one block to the next one. It means even there is no vr binds
to a hr in current block, the hr may still be thought as a busy one
becase of the left infroamtion of previous blocks

Workaround for cases:

- Add `MOV LOCKED_hr LOCKED_hr` just after the instruction. It prevents
  case 1
- Add `MOV LOCKED_hr LOCKED_hr` just before the instruction. It prevents
  case 2
2022-05-31 11:58:02 +08:00

1950 lines
54 KiB
C

/*
* Copyright (C) 2021 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef _JIT_IR_H_
#define _JIT_IR_H_
#include "bh_platform.h"
#include "../interpreter/wasm.h"
#include "jit_utils.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Register (operand) representation of JIT IR.
*
* Encoding: [4-bit: kind, 28-bit register no.]
*
* Registers in JIT IR are classified into different kinds according
* to types of values they can hold. The classification is based on
* most processors' hardware register classifications, which include
* various sets of integer, floating point and vector registers with
* different sizes. These registers can be mapped onto corresponding
* kinds of hardware registers by register allocator. Instructions
* can only operate on allowed kinds of registers. For example, an
* integer instruction cannot operate on floating point or vector
* registers. Some encodings of these kinds of registers also
* represent immediate constant values and indexes to constant tables
* (see below). In that case, those registers are read-only. Writing
* to them is illegal. Reading from an immediate constant value
* register always returns the constant value encoded in the register
* no. Reading from a constant table index register always returns
* the constant value stored at the encoded index of the constant
* table of the register's kind. Immediate constant values and values
* indexed by constant table indexes can only be loaded into the
* corresponding kinds of registers if they must be loaded into
* registers. Besides these common kinds of registers, labels of
* basic blocks are also treated as registers of a special kind, which
* hold code addresses of basic block labels and are read-only. Each
* basic block is assigned one unique label register. With this
* unification, we can use the same set of load instructions to load
* values either from addresses stored in normal registers or from
* addresses of labels. Besides these register kinds, the void kind
* is a special kind of registers to denote some error occurs when a
* normal register is expected. Or it can be used as result operand
* of call and invoke instructions to denote no return values. The
* variable registers are classified into two sets: the hard registers
* whose register numbers are less than the hard register numbers of
* their kinds and the virtual registers whose register numbers are
* greater than or equal to the hard register numbers. Before
* register allocation is done, hard registers may appear in the IR
* due to special usages of passes frontend (e.g. fp_reg and exec_env_reg)
* or lower_cg. In the mean time (including during register
* allocation), those hard registers are treated same as virtual
* registers except that they may not be SSA and they can only be
* allocated to the hard registers of themselves.
*
* Classification of registers:
* + void register (kind == JIT_REG_KIND_VOID, no. must be 0)
* + label registers (kind == JIT_REG_KIND_L32)
* + value registers (kind == JIT_REG_KIND_I32/I64/F32/F64/V64/V128/V256)
* | + constants (_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG)
* | | + constant values (_JIT_REG_CONST_VAL_FLAG)
* | | + constant indexes (_JIT_REG_CONST_IDX_FLAG)
* | + variables (!(_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG))
* | | + hard registers (no. < hard register number)
* | | + virtual registers (no. >= hard register number)
*/
typedef uint32 JitReg;
/*
* Mask and shift bits of register kind.
*/
#define _JIT_REG_KIND_MASK 0xf0000000
#define _JIT_REG_KIND_SHIFT 28
/*
* Mask of register no. which must be the least significant bits.
*/
#define _JIT_REG_NO_MASK (~_JIT_REG_KIND_MASK)
/*
* Constant value flag (the most significant bit) of register
* no. field of integer, floating point and vector registers. If this
* flag is set in the register no., the rest bits of register
* no. represent a signed (27-bit) integer constant value of the
* corresponding type of the register and the register is read-only.
*/
#define _JIT_REG_CONST_VAL_FLAG ((_JIT_REG_NO_MASK >> 1) + 1)
/*
* Constant index flag of non-constant-value (constant value flag is
* not set in register no. field) integer, floating point and vector
* regisers. If this flag is set, the rest bits of the register
* no. represent an index to the constant value table of the
* corresponding type of the register and the register is read-only.
*/
#define _JIT_REG_CONST_IDX_FLAG (_JIT_REG_CONST_VAL_FLAG >> 1)
/**
* Register kinds. Don't change the order of the defined values. The
* L32 kind must be after all normal kinds (see _const_val and _reg_ann
* of JitCompContext).
*/
typedef enum JitRegKind {
JIT_REG_KIND_VOID = 0x00, /* void type */
JIT_REG_KIND_I32 = 0x01, /* 32-bit signed or unsigned integer */
JIT_REG_KIND_I64 = 0x02, /* 64-bit signed or unsigned integer */
JIT_REG_KIND_F32 = 0x03, /* 32-bit floating point */
JIT_REG_KIND_F64 = 0x04, /* 64-bit floating point */
JIT_REG_KIND_V64 = 0x05, /* 64-bit vector */
JIT_REG_KIND_V128 = 0x06, /* 128-bit vector */
JIT_REG_KIND_V256 = 0x07, /* 256-bit vector */
JIT_REG_KIND_L32 = 0x08, /* 32-bit label address */
JIT_REG_KIND_NUM /* number of register kinds */
} JitRegKind;
#if UINTPTR_MAX == UINT64_MAX
#define JIT_REG_KIND_PTR JIT_REG_KIND_I64
#else
#define JIT_REG_KIND_PTR JIT_REG_KIND_I32
#endif
/**
* Construct a new JIT IR register from the kind and no.
*
* @param reg_kind register kind
* @param reg_no register no.
*
* @return the new register with the given kind and no.
*/
static inline JitReg
jit_reg_new(unsigned reg_kind, unsigned reg_no)
{
return (JitReg)((reg_kind << _JIT_REG_KIND_SHIFT) | reg_no);
}
/**
* Get the register kind of the given register.
*
* @param r a JIT IR register
*
* @return the register kind of register r
*/
static inline int
jit_reg_kind(JitReg r)
{
return (r & _JIT_REG_KIND_MASK) >> _JIT_REG_KIND_SHIFT;
}
/**
* Get the register no. of the given JIT IR register.
*
* @param r a JIT IR register
*
* @return the register no. of register r
*/
static inline int
jit_reg_no(JitReg r)
{
return r & _JIT_REG_NO_MASK;
}
/**
* Check whether the given register is a normal value register.
*
* @param r a JIT IR register
*
* @return true iff the register is a normal value register
*/
static inline bool
jit_reg_is_value(JitReg r)
{
unsigned kind = jit_reg_kind(r);
return kind > JIT_REG_KIND_VOID && kind < JIT_REG_KIND_L32;
}
/**
* Check whether the given register is a constant value.
*
* @param r a JIT IR register
*
* @return true iff register r is a constant value
*/
static inline bool
jit_reg_is_const_val(JitReg r)
{
return jit_reg_is_value(r) && (r & _JIT_REG_CONST_VAL_FLAG);
}
/**
* Check whether the given register is a constant table index.
*
* @param r a JIT IR register
*
* @return true iff register r is a constant table index
*/
static inline bool
jit_reg_is_const_idx(JitReg r)
{
return (jit_reg_is_value(r) && !jit_reg_is_const_val(r)
&& (r & _JIT_REG_CONST_IDX_FLAG));
}
/**
* Check whether the given register is a constant.
*
* @param r a JIT IR register
*
* @return true iff register r is a constant
*/
static inline bool
jit_reg_is_const(JitReg r)
{
return (jit_reg_is_value(r)
&& (r & (_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG)));
}
/**
* Check whether the given register is a normal variable register.
*
* @param r a JIT IR register
*
* @return true iff the register is a normal variable register
*/
static inline bool
jit_reg_is_variable(JitReg r)
{
return (jit_reg_is_value(r)
&& !(r & (_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG)));
}
/**
* Test whether the register is the given kind.
*
* @param KIND register kind name
* @param R register
*
* @return true if the register is the given kind
*/
#define jit_reg_is_kind(KIND, R) (jit_reg_kind(R) == JIT_REG_KIND_##KIND)
/**
* Construct a zero IR register with given the kind.
*
* @param kind the kind of the value
*
* @return a constant register of zero
*/
static inline JitReg
jit_reg_new_zero(unsigned kind)
{
bh_assert(kind != JIT_REG_KIND_VOID && kind < JIT_REG_KIND_L32);
return jit_reg_new(kind, _JIT_REG_CONST_VAL_FLAG);
}
/**
* Test whether the register is a zero constant value.
*
* @param reg an IR register
*
* @return true iff the register is a constant zero
*/
static inline JitReg
jit_reg_is_zero(JitReg reg)
{
return (jit_reg_is_value(reg)
&& jit_reg_no(reg) == _JIT_REG_CONST_VAL_FLAG);
}
/**
* Operand of instructions with fixed-number register operand(s).
*/
typedef JitReg JitOpndReg;
/**
* Operand of instructions with variable-number register operand(s).
*/
typedef struct JitOpndVReg {
uint32 _reg_num;
JitReg _reg[1];
} JitOpndVReg;
/**
* Operand of tableswitch instruction.
*/
typedef struct JitOpndTableSwitch {
int32 low_value; /* lowest value of the table */
int32 high_value; /* highest value of the table */
/* NOTE: distance between JitReg operands must be the same (see
jit_insn_opnd_regs). */
JitReg value; /* the value to be compared */
/* NOTE: offset between adjacent targets must be sizeof (targets[0])
(see implementation of jit_block_succs), so the default_target
field must be here. */
JitReg default_target; /* default target BB */
JitReg targets[1]; /* jump target BBs */
} JitOpndTableSwitch;
/**
* Operand of lookupswitch instruction.
*/
typedef struct JitOpndLookupSwitch {
/* NOTE: distance between JitReg operands must be the same (see
jit_insn_opnd_regs). */
JitReg value; /* the value to be compared */
uint32 match_pairs_num; /* match pairs number */
/* NOTE: offset between adjacent targets must be sizeof
(match_pairs[0]) (see implementation of jit_basic_block_succs),
so the default_target field must be here. */
JitReg default_target; /* default target BB */
struct {
int32 value; /* match value of the match pair */
JitReg target; /* target BB of the match pair */
} match_pairs[1]; /* match pairs of the instruction */
} JitOpndLookupSwitch;
/**
* Instruction of JIT IR.
*/
typedef struct JitInsn {
/* Pointers to the previous and next instructions. */
struct JitInsn *prev;
struct JitInsn *next;
/* Opcode of the instruction. */
uint16 opcode;
/* Reserved field that may be used by optimizations locally. */
uint8 flags_u8;
/* The unique ID of the instruction. */
uint16 uid;
/* Operands for different kinds of instructions. */
union {
/* For instructions with fixed-number register operand(s). */
JitOpndReg _opnd_Reg[1];
/* For instructions with variable-number register operand(s). */
JitOpndVReg _opnd_VReg;
/* For tableswitch instruction. */
JitOpndTableSwitch _opnd_TableSwitch;
/* For lookupswitch instruction. */
JitOpndLookupSwitch _opnd_LookupSwitch;
} _opnd;
} JitInsn;
/**
* Opcodes of IR instructions.
*/
typedef enum JitOpcode {
#define INSN(NAME, OPND_KIND, OPND_NUM, FIRST_USE) JIT_OP_##NAME,
#include "jit_ir.def"
#undef INSN
JIT_OP_OPCODE_NUMBER
} JitOpcode;
/*
* Helper functions for creating new instructions. Don't call them
* directly. Use jit_insn_new_NAME, such as jit_insn_new_MOV instead.
*/
JitInsn *
_jit_insn_new_Reg_1(JitOpcode opc, JitReg r0);
JitInsn *
_jit_insn_new_Reg_2(JitOpcode opc, JitReg r0, JitReg r1);
JitInsn *
_jit_insn_new_Reg_3(JitOpcode opc, JitReg r0, JitReg r1, JitReg r2);
JitInsn *
_jit_insn_new_Reg_4(JitOpcode opc, JitReg r0, JitReg r1, JitReg r2, JitReg r3);
JitInsn *
_jit_insn_new_Reg_5(JitOpcode opc, JitReg r0, JitReg r1, JitReg r2, JitReg r3,
JitReg r4);
JitInsn *
_jit_insn_new_VReg_1(JitOpcode opc, JitReg r0, int n);
JitInsn *
_jit_insn_new_VReg_2(JitOpcode opc, JitReg r0, JitReg r1, int n);
JitInsn *
_jit_insn_new_TableSwitch_1(JitOpcode opc, JitReg value, int32 low, int32 high);
JitInsn *
_jit_insn_new_LookupSwitch_1(JitOpcode opc, JitReg value, uint32 num);
/*
* Instruction creation functions jit_insn_new_NAME, where NAME is the
* name of the instruction defined in jit_ir.def.
*/
#define ARG_DECL_Reg_1 JitReg r0
#define ARG_LIST_Reg_1 r0
#define ARG_DECL_Reg_2 JitReg r0, JitReg r1
#define ARG_LIST_Reg_2 r0, r1
#define ARG_DECL_Reg_3 JitReg r0, JitReg r1, JitReg r2
#define ARG_LIST_Reg_3 r0, r1, r2
#define ARG_DECL_Reg_4 JitReg r0, JitReg r1, JitReg r2, JitReg r3
#define ARG_LIST_Reg_4 r0, r1, r2, r3
#define ARG_DECL_Reg_5 JitReg r0, JitReg r1, JitReg r2, JitReg r3, JitReg r4
#define ARG_LIST_Reg_5 r0, r1, r2, r3, r4
#define ARG_DECL_VReg_1 JitReg r0, int n
#define ARG_LIST_VReg_1 r0, n
#define ARG_DECL_VReg_2 JitReg r0, JitReg r1, int n
#define ARG_LIST_VReg_2 r0, r1, n
#define ARG_DECL_TableSwitch_1 JitReg value, int32 low, int32 high
#define ARG_LIST_TableSwitch_1 value, low, high
#define ARG_DECL_LookupSwitch_1 JitReg value, uint32 num
#define ARG_LIST_LookupSwitch_1 value, num
#define INSN(NAME, OPND_KIND, OPND_NUM, FIRST_USE) \
static inline JitInsn *jit_insn_new_##NAME( \
ARG_DECL_##OPND_KIND##_##OPND_NUM) \
{ \
return _jit_insn_new_##OPND_KIND##_##OPND_NUM( \
JIT_OP_##NAME, ARG_LIST_##OPND_KIND##_##OPND_NUM); \
}
#include "jit_ir.def"
#undef INSN
#undef ARG_DECL_Reg_1
#undef ARG_LIST_Reg_1
#undef ARG_DECL_Reg_2
#undef ARG_LIST_Reg_2
#undef ARG_DECL_Reg_3
#undef ARG_LIST_Reg_3
#undef ARG_DECL_Reg_4
#undef ARG_LIST_Reg_4
#undef ARG_DECL_Reg_5
#undef ARG_LIST_Reg_5
#undef ARG_DECL_VReg_1
#undef ARG_LIST_VReg_1
#undef ARG_DECL_VReg_2
#undef ARG_LIST_VReg_2
#undef ARG_DECL_TableSwitch_1
#undef ARG_LIST_TableSwitch_1
#undef ARG_DECL_LookupSwitch_1
#undef ARG_LIST_LookupSwitch_1
/**
* Delete an instruction
*
* @param insn an instruction to be deleted
*/
static inline void
jit_insn_delete(JitInsn *insn)
{
jit_free(insn);
}
/*
* Runtime type check functions that check whether accessing the n-th
* operand is legal. They are only used for in self-verification
* mode.
*
* @param insn any JIT IR instruction
* @param n index of the operand to access
*
* @return true if the access is legal
*/
bool
_jit_insn_check_opnd_access_Reg(const JitInsn *insn, unsigned n);
bool
_jit_insn_check_opnd_access_VReg(const JitInsn *insn, unsigned n);
bool
_jit_insn_check_opnd_access_TableSwitch(const JitInsn *insn);
bool
_jit_insn_check_opnd_access_LookupSwitch(const JitInsn *insn);
/**
* Get the pointer to the n-th register operand of the given
* instruction. The instruction format must be Reg.
*
* @param insn a Reg format instruction
* @param n index of the operand to get
*
* @return pointer to the n-th operand
*/
static inline JitReg *
jit_insn_opnd(JitInsn *insn, int n)
{
bh_assert(_jit_insn_check_opnd_access_Reg(insn, n));
return &insn->_opnd._opnd_Reg[n];
}
/**
* Get the pointer to the n-th register operand of the given
* instruction. The instruction format must be VReg.
*
* @param insn a VReg format instruction
* @param n index of the operand to get
*
* @return pointer to the n-th operand
*/
static inline JitReg *
jit_insn_opndv(JitInsn *insn, int n)
{
bh_assert(_jit_insn_check_opnd_access_VReg(insn, n));
return &insn->_opnd._opnd_VReg._reg[n];
}
/**
* Get the operand number of the given instruction. The instruction
* format must be VReg.
*
* @param insn a VReg format instruction
*
* @return operand number of the instruction
*/
static inline unsigned
jit_insn_opndv_num(const JitInsn *insn)
{
bh_assert(_jit_insn_check_opnd_access_VReg(insn, 0));
return insn->_opnd._opnd_VReg._reg_num;
}
/**
* Get the pointer to the TableSwitch operand of the given
* instruction. The instruction format must be TableSwitch.
*
* @param insn a TableSwitch format instruction
*
* @return pointer to the operand
*/
static inline JitOpndTableSwitch *
jit_insn_opndts(JitInsn *insn)
{
bh_assert(_jit_insn_check_opnd_access_TableSwitch(insn));
return &insn->_opnd._opnd_TableSwitch;
}
/**
* Get the pointer to the LookupSwitch operand of the given
* instruction. The instruction format must be LookupSwitch.
*
* @param insn a LookupSwitch format instruction
*
* @return pointer to the operand
*/
static inline JitOpndLookupSwitch *
jit_insn_opndls(JitInsn *insn)
{
bh_assert(_jit_insn_check_opnd_access_LookupSwitch(insn));
return &insn->_opnd._opnd_LookupSwitch;
}
/**
* Insert instruction @p insn2 before instruction @p insn1.
*
* @param insn1 any instruction
* @param insn2 any instruction
*/
void
jit_insn_insert_before(JitInsn *insn1, JitInsn *insn2);
/**
* Insert instruction @p insn2 after instruction @p insn1.
*
* @param insn1 any instruction
* @param insn2 any instruction
*/
void
jit_insn_insert_after(JitInsn *insn1, JitInsn *insn2);
/**
* Unlink the instruction @p insn from the containing list.
*
* @param insn an instruction
*/
void
jit_insn_unlink(JitInsn *insn);
/**
* Get the hash value of the comparable instruction (pure functions
* and exception check instructions).
*
* @param insn an instruction
*
* @return hash value of the instruction
*/
unsigned
jit_insn_hash(JitInsn *insn);
/**
* Compare whether the two comparable instructions are the same.
*
* @param insn1 the first instruction
* @param insn2 the second instruction
*
* @return true if the two instructions are the same
*/
bool
jit_insn_equal(JitInsn *insn1, JitInsn *insn2);
/**
* Register vector for accessing predecessors and successors of a
* basic block.
*/
typedef struct JitRegVec {
JitReg *_base; /* points to the first register */
int32 _stride; /* stride to the next register */
uint32 num; /* number of registers */
} JitRegVec;
/**
* Get the address of the i-th register in the register vector.
*
* @param vec a register vector
* @param i index to the register vector
*
* @return the address of the i-th register in the vector
*/
static inline JitReg *
jit_reg_vec_at(const JitRegVec *vec, unsigned i)
{
bh_assert(i < vec->num);
return vec->_base + vec->_stride * i;
}
/**
* Visit each element in a register vector.
*
* @param V (JitRegVec) the register vector
* @param I (unsigned) index variable in the vector
* @param R (JitReg *) resiger pointer variable
*/
#define JIT_REG_VEC_FOREACH(V, I, R) \
for ((I) = 0, (R) = (V)._base; (I) < (V).num; (I)++, (R) += (V)._stride)
/**
* Visit each register defined by an instruction.
*
* @param V (JitRegVec) register vector of the instruction
* @param I (unsigned) index variable in the vector
* @param R (JitReg *) resiger pointer variable
* @param F index of the first used register
*/
#define JIT_REG_VEC_FOREACH_DEF(V, I, R, F) \
for ((I) = 0, (R) = (V)._base; (I) < (F); (I)++, (R) += (V)._stride)
/**
* Visit each register used by an instruction.
*
* @param V (JitRegVec) register vector of the instruction
* @param I (unsigned) index variable in the vector
* @param R (JitReg *) resiger pointer variable
* @param F index of the first used register
*/
#define JIT_REG_VEC_FOREACH_USE(V, I, R, F) \
for ((I) = (F), (R) = (V)._base + (F) * (V)._stride; (I) < (V).num; \
(I)++, (R) += (V)._stride)
/**
* Get a generic register vector that contains all register operands.
* The registers defined by the instruction, if any, appear before the
* registers used by the instruction.
*
* @param insn an instruction
*
* @return a register vector containing register operands
*/
JitRegVec
jit_insn_opnd_regs(JitInsn *insn);
/**
* Get the index of the first use register in the register vector
* returned by jit_insn_opnd_regs.
*
* @param insn an instruction
*
* @return the index of the first use register in the register vector
*/
unsigned
jit_insn_opnd_first_use(JitInsn *insn);
/**
* Basic Block of JIT IR. It is a basic block only if the IR is not in
* non-BB form. The block is represented by a special phi node, whose
* result and arguments are label registers. The result label is the
* containing block's label. The arguments are labels of predecessors
* of the block. Successor labels are stored in the last instruction,
* which must be a control flow instruction. Instructions of a block
* are linked in a circular linked list with the block phi node as the
* end of the list. The next and prev field of the block phi node
* point to the first and last instructions of the block.
*/
typedef JitInsn JitBasicBlock;
/**
* Create a new basic block instance.
*
* @param label the label of the new basic block
* @param n number of predecessors
*
* @return the created new basic block instance
*/
JitBasicBlock *
jit_basic_block_new(JitReg label, int n);
/**
* Delete a basic block instance and all instructions init.
*
* @param block the basic block to be deleted
*/
void
jit_basic_block_delete(JitBasicBlock *block);
/**
* Get the label of the basic block.
*
* @param block a basic block instance
*
* @return the label of the basic block
*/
static inline JitReg
jit_basic_block_label(JitBasicBlock *block)
{
return *(jit_insn_opndv(block, 0));
}
/**
* Get the first instruction of the basic block.
*
* @param block a basic block instance
*
* @return the first instruction of the basic block
*/
static inline JitInsn *
jit_basic_block_first_insn(JitBasicBlock *block)
{
return block->next;
}
/**
* Get the last instruction of the basic block.
*
* @param block a basic block instance
*
* @return the last instruction of the basic block
*/
static inline JitInsn *
jit_basic_block_last_insn(JitBasicBlock *block)
{
return block->prev;
}
/**
* Get the end of instruction list of the basic block (which is always
* the block itself).
*
* @param block a basic block instance
*
* @return the end of instruction list of the basic block
*/
static inline JitInsn *
jit_basic_block_end_insn(JitBasicBlock *block)
{
return block;
}
/**
* Visit each instruction in the block from the first to the last. In
* the code block, the instruction pointer @p I must be a valid
* pointer to an instruction in the block. That means if the
* instruction may be deleted, @p I must point to the previous or next
* valid instruction before the next iteration.
*
* @param B (JitBasicBlock *) the block
* @param I (JitInsn *) instruction visited
*/
#define JIT_FOREACH_INSN(B, I) \
for (I = jit_basic_block_first_insn(B); I != jit_basic_block_end_insn(B); \
I = I->next)
/**
* Visit each instruction in the block from the last to the first. In
* the code block, the instruction pointer @p I must be a valid
* pointer to an instruction in the block. That means if the
* instruction may be deleted, @p I must point to the previous or next
* valid instruction before the next iteration.
*
* @param B (JitBasicBlock *) the block
* @param I (JitInsn *) instruction visited
*/
#define JIT_FOREACH_INSN_REVERSE(B, I) \
for (I = jit_basic_block_last_insn(B); I != jit_basic_block_end_insn(B); \
I = I->prev)
/**
* Prepend an instruction in the front of the block. The position is
* just after the block phi node (the block instance itself).
*
* @param block a block
* @param insn an instruction to be prepended
*/
static inline void
jit_basic_block_prepend_insn(JitBasicBlock *block, JitInsn *insn)
{
jit_insn_insert_after(block, insn);
}
/**
* Append an instruction to the end of the basic block.
*
* @param block a basic block
* @param insn an instruction to be appended
*/
static inline void
jit_basic_block_append_insn(JitBasicBlock *block, JitInsn *insn)
{
jit_insn_insert_before(block, insn);
}
/**
* Get the register vector of predecessors of a basic block.
*
* @param block a JIT IR block
*
* @return register vector of the predecessors
*/
JitRegVec
jit_basic_block_preds(JitBasicBlock *block);
/**
* Get the register vector of successors of a basic block.
*
* @param block a JIT IR basic block
*
* @return register vector of the successors
*/
JitRegVec
jit_basic_block_succs(JitBasicBlock *block);
/**
* Hard register information of one kind.
*/
typedef struct JitHardRegInfo {
struct {
/* Hard register number of this kind. */
uint32 num;
/* Whether each register is fixed. */
const uint8 *fixed;
/* Whether each register is caller-saved in the native ABI. */
const uint8 *caller_saved_native;
/* Whether each register is caller-saved in the JITed ABI. */
const uint8 *caller_saved_jitted;
} info[JIT_REG_KIND_L32];
/* The indexes of hard registers of frame pointer, exec_env and cmp. */
uint32 fp_hreg_index;
uint32 exec_env_hreg_index;
uint32 cmp_hreg_index;
} JitHardRegInfo;
struct JitBlock;
struct JitCompContext;
struct JitValueSlot;
/**
* Value in the WASM operation stack, each stack element
* is a Jit register
*/
typedef struct JitValue {
struct JitValue *next;
struct JitValue *prev;
struct JitValueSlot *value;
/* VALUE_TYPE_I32/I64/F32/F64/VOID */
uint8 type;
} JitValue;
/**
* Value stack, represents stack elements in a WASM block
*/
typedef struct JitValueStack {
JitValue *value_list_head;
JitValue *value_list_end;
} JitValueStack;
/* Record information of a value slot of local variable or stack
during translation. */
typedef struct JitValueSlot {
/* The virtual register that holds the value of the slot if the
value of the slot is in register. */
JitReg reg;
/* The dirty bit of the value slot. It's set if the value in
register is newer than the value in memory. */
uint32 dirty : 1;
/* Whether the new value in register is a reference, which is valid
only when the dirty bit is set. */
uint32 ref : 1;
/* Committed reference flag. 0: unknown, 1: not-reference, 2:
reference. */
uint32 committed_ref : 2;
} JitValueSlot;
typedef struct JitMemRegs {
JitReg memory_inst;
/* The following registers should be re-loaded after
memory.grow, callbc and callnative */
JitReg memory_data;
JitReg memory_data_end;
JitReg mem_bound_check_1byte;
JitReg mem_bound_check_2bytes;
JitReg mem_bound_check_4bytes;
JitReg mem_bound_check_8bytes;
JitReg mem_bound_check_16bytes;
} JitMemRegs;
typedef struct JitTableRegs {
JitReg table_inst;
JitReg table_data;
/* Should be re-loaded after table.grow,
callbc and callnative */
JitReg table_cur_size;
} JitTableRegs;
/* Frame information for translation */
typedef struct JitFrame {
/* The current wasm module */
WASMModule *cur_wasm_module;
/* The current wasm function */
WASMFunction *cur_wasm_func;
/* The current wasm function index */
uint32 cur_wasm_func_idx;
/* The current compilation context */
struct JitCompContext *cc;
/* Max local slot number. */
uint32 max_locals;
/* Max operand stack slot number. */
uint32 max_stacks;
/* Instruction pointer */
uint8 *ip;
/* Stack top pointer */
JitValueSlot *sp;
/* Committed instruction pointer */
uint8 *committed_ip;
/* Committed stack top pointer */
JitValueSlot *committed_sp;
/* WASM module instance */
JitReg module_inst_reg;
/* WASM module */
JitReg module_reg;
/* module->fast_jit_func_ptrs */
JitReg func_ptrs_reg;
/* Base address of global data */
JitReg global_data_reg;
/* Boundary of auxiliary stack */
JitReg aux_stack_bound_reg;
/* Bottom of auxiliary stack */
JitReg aux_stack_bottom_reg;
/* Memory instances */
JitReg memories_reg;
/* Data of memory instances */
JitMemRegs *memory_regs;
/* Table instances */
JitReg tables_reg;
/* Data of table instances */
JitTableRegs *table_regs;
/* Local variables */
JitValueSlot lp[1];
} JitFrame;
typedef struct JitIncomingInsn {
struct JitIncomingInsn *next;
JitInsn *insn;
uint32 opnd_idx;
} JitIncomingInsn, *JitIncomingInsnList;
typedef struct JitBlock {
struct JitBlock *next;
struct JitBlock *prev;
/* The current Jit Block */
struct JitCompContext *cc;
/* LABEL_TYPE_BLOCK/LOOP/IF/FUNCTION */
uint32 label_type;
/* code of else opcode of this block, if it is a IF block */
uint8 *wasm_code_else;
/* code of end opcode of this block */
uint8 *wasm_code_end;
/* JIT label points to code begin */
JitBasicBlock *basic_block_entry;
/* JIT label points to code else */
JitBasicBlock *basic_block_else;
/* JIT label points to code end */
JitBasicBlock *basic_block_end;
/* Incoming INSN for basic_block_else */
JitInsn *incoming_insn_for_else_bb;
/* Incoming INSNs for basic_block_end */
JitIncomingInsnList incoming_insns_for_end_bb;
/* WASM operation stack */
JitValueStack value_stack;
/* Param count/types/PHIs of this block */
uint32 param_count;
uint8 *param_types;
/* Result count/types/PHIs of this block */
uint32 result_count;
uint8 *result_types;
/* The begin frame stack pointer of this block */
JitValueSlot *frame_sp_begin;
} JitBlock;
/**
* Block stack, represents WASM block stack elements
*/
typedef struct JitBlockStack {
JitBlock *block_list_head;
JitBlock *block_list_end;
} JitBlockStack;
/**
* The JIT compilation context for one compilation process of a
* compilation unit.
*/
typedef struct JitCompContext {
/* Hard register information of each kind. */
const JitHardRegInfo *hreg_info;
/* No. of the pass to be applied. */
uint8 cur_pass_no;
/* The current wasm module */
WASMModule *cur_wasm_module;
/* The current wasm function */
WASMFunction *cur_wasm_func;
/* The current wasm function index */
uint32 cur_wasm_func_idx;
/* The block stack */
JitBlockStack block_stack;
bool mem_space_unchanged;
/* Entry and exit labels of the compilation unit, whose numbers must
be 0 and 1 respectively (see JIT_FOREACH_BLOCK). */
JitReg entry_label;
JitReg exit_label;
JitBasicBlock **exce_basic_blocks;
JitIncomingInsnList *incoming_insns_for_exec_bbs;
/* The current basic block to generate instructions */
JitBasicBlock *cur_basic_block;
/* Registers of frame pointer, exec_env and CMP result. */
JitReg fp_reg;
JitReg exec_env_reg;
JitReg cmp_reg;
/* WASM module instance */
JitReg module_inst_reg;
/* WASM module */
JitReg module_reg;
/* module->fast_jit_func_ptrs */
JitReg func_ptrs_reg;
/* Base address of global data */
JitReg global_data_reg;
/* Boundary of auxiliary stack */
JitReg aux_stack_bound_reg;
/* Bottom of auxiliary stack */
JitReg aux_stack_bottom_reg;
/* Memory instances */
JitReg memories_reg;
/* Data of memory instances */
JitMemRegs *memory_regs;
/* Table instances */
JitReg tables_reg;
/* Data of table instances */
JitTableRegs *table_regs;
/* Current frame information for translation */
JitFrame *jit_frame;
/* The total frame size of current function */
uint32 total_frame_size;
/* The spill cache offset to the interp frame */
uint32 spill_cache_offset;
/* The spill cache size */
uint32 spill_cache_size;
/* The offset of jitted_return_address in the frame, which is set by
the pass frontend and used by the pass codegen. */
uint32 jitted_return_address_offset;
/* Begin and end addresses of the jitted code produced by the pass
codegen and consumed by the region registration after codegen and
the pass dump. */
void *jitted_addr_begin;
void *jitted_addr_end;
char last_error[128];
/* Below fields are all private. Don't access them directly. */
/* Reference count of the compilation context. */
uint16 _reference_count;
/* Constant values. */
struct {
/* Number of constant values of each kind. */
uint32 _num[JIT_REG_KIND_L32];
/* Capacity of register annotations of each kind. */
uint32 _capacity[JIT_REG_KIND_L32];
/* Constant vallues of each kind. */
uint8 *_value[JIT_REG_KIND_L32];
/* Next element on the list of values with the same hash code. */
JitReg *_next[JIT_REG_KIND_L32];
/* Size of the hash table. */
uint32 _hash_table_size;
/* Map values to JIT register. */
JitReg *_hash_table;
} _const_val;
/* Annotations of labels, registers and instructions. */
struct {
/* Number of all ever created labels. */
uint32 _label_num;
/* Capacity of label annotations. */
uint32 _label_capacity;
/* Number of all ever created instructions. */
uint32 _insn_num;
/* Capacity of instruction annotations. */
uint32 _insn_capacity;
/* Number of ever created registers of each kind. */
uint32 _reg_num[JIT_REG_KIND_L32];
/* Capacity of register annotations of each kind. */
uint32 _reg_capacity[JIT_REG_KIND_L32];
/* Storage of annotations. */
#define ANN_LABEL(TYPE, NAME) TYPE *_label_##NAME;
#define ANN_INSN(TYPE, NAME) TYPE *_insn_##NAME;
#define ANN_REG(TYPE, NAME) TYPE *_reg_##NAME[JIT_REG_KIND_L32];
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/* Flags of annotations. */
#define ANN_LABEL(TYPE, NAME) uint32 _label_##NAME##_enabled : 1;
#define ANN_INSN(TYPE, NAME) uint32 _insn_##NAME##_enabled : 1;
#define ANN_REG(TYPE, NAME) uint32 _reg_##NAME##_enabled : 1;
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
} _ann;
/* Instruction hash table. */
struct {
/* Size of the hash table. */
uint32 _size;
/* The hash table. */
JitInsn **_table;
} _insn_hash_table;
/* indicate if the last comparision is about floating-point numbers or not
*/
bool last_cmp_on_fp;
} JitCompContext;
/*
* Annotation accessing functions jit_annl_NAME, jit_anni_NAME and
* jit_annr_NAME.
*/
#define ANN_LABEL(TYPE, NAME) \
static inline TYPE *jit_annl_##NAME(JitCompContext *cc, JitReg label) \
{ \
unsigned idx = jit_reg_no(label); \
bh_assert(jit_reg_kind(label) == JIT_REG_KIND_L32); \
bh_assert(idx < cc->_ann._label_num); \
bh_assert(cc->_ann._label_##NAME##_enabled); \
return &cc->_ann._label_##NAME[idx]; \
}
#define ANN_INSN(TYPE, NAME) \
static inline TYPE *jit_anni_##NAME(JitCompContext *cc, JitInsn *insn) \
{ \
unsigned uid = insn->uid; \
bh_assert(uid < cc->_ann._insn_num); \
bh_assert(cc->_ann._insn_##NAME##_enabled); \
return &cc->_ann._insn_##NAME[uid]; \
}
#define ANN_REG(TYPE, NAME) \
static inline TYPE *jit_annr_##NAME(JitCompContext *cc, JitReg reg) \
{ \
unsigned kind = jit_reg_kind(reg); \
unsigned no = jit_reg_no(reg); \
bh_assert(kind < JIT_REG_KIND_L32); \
bh_assert(no < cc->_ann._reg_num[kind]); \
bh_assert(cc->_ann._reg_##NAME##_enabled); \
return &cc->_ann._reg_##NAME[kind][no]; \
}
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/*
* Annotation enabling functions jit_annl_enable_NAME,
* jit_anni_enable_NAME and jit_annr_enable_NAME, which allocate
* sufficient memory for the annotations.
*/
#define ANN_LABEL(TYPE, NAME) bool jit_annl_enable_##NAME(JitCompContext *cc);
#define ANN_INSN(TYPE, NAME) bool jit_anni_enable_##NAME(JitCompContext *cc);
#define ANN_REG(TYPE, NAME) bool jit_annr_enable_##NAME(JitCompContext *cc);
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/*
* Annotation disabling functions jit_annl_disable_NAME,
* jit_anni_disable_NAME and jit_annr_disable_NAME, which release
* memory of the annotations. Before calling these functions,
* resources owned by the annotations must be explictely released.
*/
#define ANN_LABEL(TYPE, NAME) void jit_annl_disable_##NAME(JitCompContext *cc);
#define ANN_INSN(TYPE, NAME) void jit_anni_disable_##NAME(JitCompContext *cc);
#define ANN_REG(TYPE, NAME) void jit_annr_disable_##NAME(JitCompContext *cc);
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/*
* Functions jit_annl_is_enabled_NAME, jit_anni_is_enabled_NAME and
* jit_annr_is_enabled_NAME for checking whether an annotation is
* enabled.
*/
#define ANN_LABEL(TYPE, NAME) \
static inline bool jit_annl_is_enabled_##NAME(JitCompContext *cc) \
{ \
return !!cc->_ann._label_##NAME##_enabled; \
}
#define ANN_INSN(TYPE, NAME) \
static inline bool jit_anni_is_enabled_##NAME(JitCompContext *cc) \
{ \
return !!cc->_ann._insn_##NAME##_enabled; \
}
#define ANN_REG(TYPE, NAME) \
static inline bool jit_annr_is_enabled_##NAME(JitCompContext *cc) \
{ \
return !!cc->_ann._reg_##NAME##_enabled; \
}
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/**
* Initialize a compilation context.
*
* @param cc the compilation context
* @param htab_size the initial hash table size of constant pool
*
* @return cc if succeeds, NULL otherwise
*/
JitCompContext *
jit_cc_init(JitCompContext *cc, unsigned htab_size);
/**
* Release all resources of a compilation context, which doesn't
* include the compilation context itself.
*
* @param cc the compilation context
*/
void
jit_cc_destroy(JitCompContext *cc);
/**
* Increase the reference count of the compilation context.
*
* @param cc the compilation context
*/
static inline void
jit_cc_inc_ref(JitCompContext *cc)
{
cc->_reference_count++;
}
/**
* Decrease the reference_count and destroy and free the compilation
* context if the reference_count is decreased to zero.
*
* @param cc the compilation context
*/
void
jit_cc_delete(JitCompContext *cc);
char *
jit_get_last_error(JitCompContext *cc);
void
jit_set_last_error(JitCompContext *cc, const char *error);
void
jit_set_last_error_v(JitCompContext *cc, const char *format, ...);
/**
* Create a I32 constant value with relocatable into the compilation
* context. A constant value that has relocation info cannot be
* constant-folded as normal constants because its value depends on
* runtime context and may be different in different executions.
*
* @param cc compilation context
* @param val a I32 value
* @param rel relocation information
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_I32_rel(JitCompContext *cc, int32 val, uint32 rel);
/**
* Create a I32 constant value without relocation info (0) into the
* compilation context.
*
* @param cc compilation context
* @param val a I32 value
*
* @return a constant register containing the value
*/
static inline JitReg
jit_cc_new_const_I32(JitCompContext *cc, int32 val)
{
return jit_cc_new_const_I32_rel(cc, val, 0);
}
/**
* Create a I64 constant value into the compilation context.
*
* @param cc compilation context
* @param val a I64 value
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_I64(JitCompContext *cc, int64 val);
#if UINTPTR_MAX == UINT64_MAX
#define jit_cc_new_const_PTR jit_cc_new_const_I64
#else
#define jit_cc_new_const_PTR jit_cc_new_const_I32
#endif
/**
* Create a F32 constant value into the compilation context.
*
* @param cc compilation context
* @param val a F32 value
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_F32(JitCompContext *cc, float val);
/**
* Create a F64 constant value into the compilation context.
*
* @param cc compilation context
* @param val a F64 value
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_F64(JitCompContext *cc, double val);
/**
* Get the relocation info of a I32 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the relocation info of the constant
*/
uint32
jit_cc_get_const_I32_rel(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a I32 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
int32
jit_cc_get_const_I32(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a I64 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
int64
jit_cc_get_const_I64(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a F32 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
float
jit_cc_get_const_F32(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a F64 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
double
jit_cc_get_const_F64(JitCompContext *cc, JitReg reg);
/**
* Get the number of total created labels.
*
* @param cc the compilation context
*
* @return the number of total created labels
*/
static inline unsigned
jit_cc_label_num(JitCompContext *cc)
{
return cc->_ann._label_num;
}
/**
* Get the number of total created instructions.
*
* @param cc the compilation context
*
* @return the number of total created instructions
*/
static inline unsigned
jit_cc_insn_num(JitCompContext *cc)
{
return cc->_ann._insn_num;
}
/**
* Get the number of total created registers.
*
* @param cc the compilation context
* @param kind the register kind
*
* @return the number of total created registers
*/
static inline unsigned
jit_cc_reg_num(JitCompContext *cc, unsigned kind)
{
bh_assert(kind < JIT_REG_KIND_L32);
return cc->_ann._reg_num[kind];
}
/**
* Create a new label in the compilation context.
*
* @param cc the compilation context
*
* @return a new label in the compilation context
*/
JitReg
jit_cc_new_label(JitCompContext *cc);
/**
* Create a new block with a new label in the compilation context.
*
* @param cc the compilation context
* @param n number of predecessors
*
* @return a new block with a new label in the compilation context
*/
JitBasicBlock *
jit_cc_new_basic_block(JitCompContext *cc, int n);
/**
* Resize the predecessor number of a block.
*
* @param cc the containing compilation context
* @param block block to be resized
* @param n new number of predecessors
*
* @return the new block if succeeds, NULL otherwise
*/
JitBasicBlock *
jit_cc_resize_basic_block(JitCompContext *cc, JitBasicBlock *block, int n);
/**
* Initialize the instruction hash table to the given size and enable
* the instruction's _hash_link annotation.
*
* @param cc the containing compilation context
* @param n size of the hash table
*
* @return true if succeeds, false otherwise
*/
bool
jit_cc_enable_insn_hash(JitCompContext *cc, unsigned n);
/**
* Destroy the instruction hash table and disable the instruction's
* _hash_link annotation.
*
* @param cc the containing compilation context
*/
void
jit_cc_disable_insn_hash(JitCompContext *cc);
/**
* Reset the hash table entries.
*
* @param cc the containing compilation context
*/
void
jit_cc_reset_insn_hash(JitCompContext *cc);
/**
* Allocate a new instruction ID in the compilation context and set it
* to the given instruction.
*
* @param cc the compilation context
* @param insn IR instruction
*
* @return the insn with uid being set
*/
JitInsn *
jit_cc_set_insn_uid(JitCompContext *cc, JitInsn *insn);
/*
* Similar to jit_cc_set_insn_uid except that if setting uid failed,
* delete the insn. Only used by jit_cc_new_insn
*/
JitInsn *
_jit_cc_set_insn_uid_for_new_insn(JitCompContext *cc, JitInsn *insn);
/**
* Create a new instruction in the compilation context.
*
* @param cc the compilationo context
* @param NAME instruction name
*
* @return a new instruction in the compilation context
*/
#define jit_cc_new_insn(cc, NAME, ...) \
_jit_cc_set_insn_uid_for_new_insn(cc, jit_insn_new_##NAME(__VA_ARGS__))
/*
* Helper function for jit_cc_new_insn_norm.
*/
JitInsn *
_jit_cc_new_insn_norm(JitCompContext *cc, JitReg *result, JitInsn *insn);
/**
* Create a new instruction in the compilation context and normalize
* the instruction (constant folding and simplification etc.). If the
* instruction hashing is enabled (anni__hash_link is enabled), try to
* find the existing equivalent insruction first before adding a new
* one to the compilation contest.
*
* @param cc the compilationo context
* @param result returned result of the instruction. If the value is
* non-zero, it is the result of the constant-folding or an exsiting
* equivalent instruction, in which case no instruction is added into
* the compilation context. Otherwise, a new normalized instruction
* has been added into the compilation context.
* @param NAME instruction name
*
* @return a new or existing instruction in the compilation context
*/
#define jit_cc_new_insn_norm(cc, result, NAME, ...) \
_jit_cc_new_insn_norm(cc, result, jit_insn_new_##NAME(__VA_ARGS__))
/**
* Helper function for GEN_INSN
*
* @param cc compilation context
* @param block the current block
* @param insn the new instruction
*
* @return the new instruction if inserted, NULL otherwise
*/
static inline JitInsn *
_gen_insn(JitCompContext *cc, JitInsn *insn)
{
if (insn)
jit_basic_block_append_insn(cc->cur_basic_block, insn);
else
jit_set_last_error(cc, "generate insn failed");
return insn;
}
/**
* Generate and append an instruction to the current block.
*/
#define GEN_INSN(...) _gen_insn(cc, jit_cc_new_insn(cc, __VA_ARGS__))
#if 0
/**
* Helper function for GEN_INSN_NORM_1
*
* @param cc compilation context
* @param block the current block
* @param kind kind fo the result register
* @param result points to the returned result register
* @param insn the instruction
*
* @return the new instruction if inserted, NULL otherwise
*/
JitInsn *
_gen_insn_norm_1(JitCompContext *cc, JitBasicBlock *block, unsigned kind,
JitReg *result, JitInsn *insn);
/**
* Helper macro for GEN_INSN_NORM
*/
#define GEN_INSN_NORM_1(Kind, result, ...) \
_gen_insn_norm_1(cc, cc->cur_basic_block, Kind, &result, \
jit_cc_new_insn_norm(cc, &result, __VA_ARGS__))
/**
* Generate and append a normalized instruction to the current block.
*
* @param Type type of the result
* @param result result of the normalized instruction
*/
#define GEN_INSN_NORM(Type, result, ...) \
GEN_INSN_NORM_1(JIT_REG_KIND_##Type, result, __VA_ARGS__)
#endif
/**
* Create a constant register without relocation info.
*
* @param Type type of the register
* @param val the constant value
*
* @return the constant register if succeeds, 0 otherwise
*/
#define NEW_CONST(Type, val) jit_cc_new_const_##Type(cc, val)
/**
* Create a new virtual register in the compilation context.
*
* @param cc the compilation context
* @param kind kind of the register
*
* @return a new label in the compilation context
*/
JitReg
jit_cc_new_reg(JitCompContext *cc, unsigned kind);
/*
* Create virtual registers with specific types in the compilation
* context. They are more convenient than the above one.
*/
static inline JitReg
jit_cc_new_reg_I32(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_I32);
}
static inline JitReg
jit_cc_new_reg_I64(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_I64);
}
#if UINTPTR_MAX == UINT64_MAX
#define jit_cc_new_reg_ptr jit_cc_new_reg_I64
#else
#define jit_cc_new_reg_ptr jit_cc_new_reg_I32
#endif
static inline JitReg
jit_cc_new_reg_F32(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_F32);
}
static inline JitReg
jit_cc_new_reg_F64(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_F64);
}
static inline JitReg
jit_cc_new_reg_V64(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_V64);
}
static inline JitReg
jit_cc_new_reg_V128(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_V128);
}
static inline JitReg
jit_cc_new_reg_V256(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_V256);
}
/**
* Get the hard register numbe of the given kind
*
* @param cc the compilation context
* @param kind the register kind
*
* @return number of hard registers of the given kind
*/
static inline unsigned
jit_cc_hreg_num(JitCompContext *cc, unsigned kind)
{
bh_assert(kind < JIT_REG_KIND_L32);
return cc->hreg_info->info[kind].num;
}
/**
* Check whether a given register is a hard register.
*
* @param cc the compilation context
* @param reg the register which must be a variable
*
* @return true if the register is a hard register
*/
static inline bool
jit_cc_is_hreg(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_reg_is_variable(reg));
return no < cc->hreg_info->info[kind].num;
}
/**
* Check whether the given hard register is fixed.
*
* @param cc the compilation context
* @param reg the hard register
*
* @return true if the hard register is fixed
*/
static inline bool
jit_cc_is_hreg_fixed(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_cc_is_hreg(cc, reg));
return !!cc->hreg_info->info[kind].fixed[no];
}
/**
* Check whether the given hard register is caller-saved-native.
*
* @param cc the compilation context
* @param reg the hard register
*
* @return true if the hard register is caller-saved-native
*/
static inline bool
jit_cc_is_hreg_caller_saved_native(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_cc_is_hreg(cc, reg));
return !!cc->hreg_info->info[kind].caller_saved_native[no];
}
/**
* Check whether the given hard register is caller-saved-jitted.
*
* @param cc the compilation context
* @param reg the hard register
*
* @return true if the hard register is caller-saved-jitted
*/
static inline bool
jit_cc_is_hreg_caller_saved_jitted(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_cc_is_hreg(cc, reg));
return !!cc->hreg_info->info[kind].caller_saved_jitted[no];
}
/**
* Return the entry block of the compilation context.
*
* @param cc the compilation context
*
* @return the entry block of the compilation context
*/
static inline JitBasicBlock *
jit_cc_entry_basic_block(JitCompContext *cc)
{
return *(jit_annl_basic_block(cc, cc->entry_label));
}
/**
* Return the exit block of the compilation context.
*
* @param cc the compilation context
*
* @return the exit block of the compilation context
*/
static inline JitBasicBlock *
jit_cc_exit_basic_block(JitCompContext *cc)
{
return *(jit_annl_basic_block(cc, cc->exit_label));
}
void
jit_value_stack_push(JitValueStack *stack, JitValue *value);
JitValue *
jit_value_stack_pop(JitValueStack *stack);
void
jit_value_stack_destroy(JitValueStack *stack);
JitBlock *
jit_block_stack_top(JitBlockStack *stack);
void
jit_block_stack_push(JitBlockStack *stack, JitBlock *block);
JitBlock *
jit_block_stack_pop(JitBlockStack *stack);
void
jit_block_stack_destroy(JitBlockStack *stack);
bool
jit_block_add_incoming_insn(JitBlock *block, JitInsn *insn, uint32 opnd_idx);
void
jit_block_destroy(JitBlock *block);
bool
jit_cc_push_value(JitCompContext *cc, uint8 type, JitReg value);
bool
jit_cc_pop_value(JitCompContext *cc, uint8 type, JitReg *p_value);
bool
jit_lock_reg_in_insn(JitCompContext *cc, JitInsn *the_insn, JitReg reg_to_lock);
/**
* Update the control flow graph after successors of blocks are
* changed so that the predecessor vector of each block represents the
* updated status. The predecessors may not be required by all
* passes, so we don't need to keep them always being updated.
*
* @param cc the compilation context
*
* @return true if succeeds, false otherwise
*/
bool
jit_cc_update_cfg(JitCompContext *cc);
/**
* Visit each normal block (which is not entry nor exit block) in a
* compilation context. New blocks can be added in the loop body, but
* they won't be visited. Blocks can also be removed safely (by
* setting the label's block annotation to NULL) in the loop body.
*
* @param CC (JitCompContext *) the compilation context
* @param I (unsigned) index variable of the block (label no)
* @param E (unsigned) end index variable of block (last index + 1)
* @param B (JitBasicBlock *) block pointer variable
*/
#define JIT_FOREACH_BLOCK(CC, I, E, B) \
for ((I) = 2, (E) = (CC)->_ann._label_num; (I) < (E); (I)++) \
if (((B) = (CC)->_ann._label_basic_block[(I)]))
/**
* The version that includes entry and exit block.
*/
#define JIT_FOREACH_BLOCK_ENTRY_EXIT(CC, I, E, B) \
for ((I) = 0, (E) = (CC)->_ann._label_num; (I) < (E); (I)++) \
if (((B) = (CC)->_ann._label_basic_block[(I)]))
/**
* Visit each normal block (which is not entry nor exit block) in a
* compilation context in reverse order. New blocks can be added in
* the loop body, but they won't be visited. Blocks can also be
* removed safely (by setting the label's block annotation to NULL) in
* the loop body.
*
* @param CC (JitCompContext *) the compilation context
* @param I (unsigned) index of the block (label no)
* @param B (JitBasicBlock *) block pointer
*/
#define JIT_FOREACH_BLOCK_REVERSE(CC, I, B) \
for ((I) = (CC)->_ann._label_num; (I) > 2; (I)--) \
if (((B) = (CC)->_ann._label_basic_block[(I)-1]))
/**
* The version that includes entry and exit block.
*/
#define JIT_FOREACH_BLOCK_REVERSE_ENTRY_EXIT(CC, I, B) \
for ((I) = (CC)->_ann._label_num; (I) > 0; (I)--) \
if (((B) = (CC)->_ann._label_basic_block[(I)-1]))
#ifdef __cplusplus
}
#endif
#endif /* end of _JIT_IR_H_ */