mirror of
https://github.com/bytecodealliance/wasm-micro-runtime.git
synced 2025-05-08 20:56:13 +00:00

1. Allow TPU and GPU support at the same time. 2. Add Dockerfile to run example with [Coral USB](https://coral.ai/products/accelerator/).
163 lines
4.0 KiB
C
163 lines
4.0 KiB
C
/*
|
|
* Copyright (C) 2019 Intel Corporation. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
*/
|
|
|
|
#include "utils.h"
|
|
#include "logger.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
error
|
|
wasm_load(char *model_name, graph *g, execution_target target)
|
|
{
|
|
FILE *pFile = fopen(model_name, "r");
|
|
if (pFile == NULL)
|
|
return invalid_argument;
|
|
|
|
uint8_t *buffer;
|
|
size_t result;
|
|
|
|
// allocate memory to contain the whole file:
|
|
buffer = (uint8_t *)malloc(sizeof(uint8_t) * MAX_MODEL_SIZE);
|
|
if (buffer == NULL) {
|
|
fclose(pFile);
|
|
return missing_memory;
|
|
}
|
|
|
|
result = fread(buffer, 1, MAX_MODEL_SIZE, pFile);
|
|
if (result <= 0) {
|
|
fclose(pFile);
|
|
free(buffer);
|
|
return missing_memory;
|
|
}
|
|
|
|
graph_builder_array arr;
|
|
|
|
arr.size = 1;
|
|
arr.buf = (graph_builder *)malloc(sizeof(graph_builder));
|
|
if (arr.buf == NULL) {
|
|
fclose(pFile);
|
|
free(buffer);
|
|
return missing_memory;
|
|
}
|
|
|
|
arr.buf[0].size = result;
|
|
arr.buf[0].buf = buffer;
|
|
|
|
error res = load(&arr, tensorflowlite, target, g);
|
|
|
|
fclose(pFile);
|
|
free(buffer);
|
|
free(arr.buf);
|
|
return res;
|
|
}
|
|
|
|
error
|
|
wasm_init_execution_context(graph g, graph_execution_context *ctx)
|
|
{
|
|
return init_execution_context(g, ctx);
|
|
}
|
|
|
|
error
|
|
wasm_set_input(graph_execution_context ctx, float *input_tensor, uint32_t *dim)
|
|
{
|
|
tensor_dimensions dims;
|
|
dims.size = INPUT_TENSOR_DIMS;
|
|
dims.buf = (uint32_t *)malloc(dims.size * sizeof(uint32_t));
|
|
if (dims.buf == NULL)
|
|
return missing_memory;
|
|
|
|
tensor tensor;
|
|
tensor.dimensions = &dims;
|
|
for (int i = 0; i < tensor.dimensions->size; ++i)
|
|
tensor.dimensions->buf[i] = dim[i];
|
|
tensor.type = fp32;
|
|
tensor.data = (uint8_t *)input_tensor;
|
|
error err = set_input(ctx, 0, &tensor);
|
|
|
|
free(dims.buf);
|
|
return err;
|
|
}
|
|
|
|
error
|
|
wasm_compute(graph_execution_context ctx)
|
|
{
|
|
return compute(ctx);
|
|
}
|
|
|
|
error
|
|
wasm_get_output(graph_execution_context ctx, uint32_t index, float *out_tensor,
|
|
uint32_t *out_size)
|
|
{
|
|
return get_output(ctx, index, (uint8_t *)out_tensor, out_size);
|
|
}
|
|
|
|
float *
|
|
run_inference(execution_target target, float *input, uint32_t *input_size,
|
|
uint32_t *output_size, char *model_name,
|
|
uint32_t num_output_tensors)
|
|
{
|
|
graph graph;
|
|
if (wasm_load(model_name, &graph, target) != success) {
|
|
NN_ERR_PRINTF("Error when loading model.");
|
|
exit(1);
|
|
}
|
|
|
|
graph_execution_context ctx;
|
|
if (wasm_init_execution_context(graph, &ctx) != success) {
|
|
NN_ERR_PRINTF("Error when initialixing execution context.");
|
|
exit(1);
|
|
}
|
|
|
|
if (wasm_set_input(ctx, input, input_size) != success) {
|
|
NN_ERR_PRINTF("Error when setting input tensor.");
|
|
exit(1);
|
|
}
|
|
|
|
if (wasm_compute(ctx) != success) {
|
|
NN_ERR_PRINTF("Error when running inference.");
|
|
exit(1);
|
|
}
|
|
|
|
float *out_tensor = (float *)malloc(sizeof(float) * MAX_OUTPUT_TENSOR_SIZE);
|
|
if (out_tensor == NULL) {
|
|
NN_ERR_PRINTF("Error when allocating memory for output tensor.");
|
|
exit(1);
|
|
}
|
|
|
|
uint32_t offset = 0;
|
|
for (int i = 0; i < num_output_tensors; ++i) {
|
|
*output_size = MAX_OUTPUT_TENSOR_SIZE - *output_size;
|
|
if (wasm_get_output(ctx, i, &out_tensor[offset], output_size)
|
|
!= success) {
|
|
NN_ERR_PRINTF("Error when getting index %d.", i);
|
|
break;
|
|
}
|
|
|
|
offset += *output_size;
|
|
}
|
|
*output_size = offset;
|
|
return out_tensor;
|
|
}
|
|
|
|
input_info
|
|
create_input(int *dims)
|
|
{
|
|
input_info input = { .dim = NULL, .input_tensor = NULL, .elements = 1 };
|
|
|
|
input.dim = malloc(INPUT_TENSOR_DIMS * sizeof(uint32_t));
|
|
if (input.dim)
|
|
for (int i = 0; i < INPUT_TENSOR_DIMS; ++i) {
|
|
input.dim[i] = dims[i];
|
|
input.elements *= dims[i];
|
|
}
|
|
|
|
input.input_tensor = malloc(input.elements * sizeof(float));
|
|
for (int i = 0; i < input.elements; ++i)
|
|
input.input_tensor[i] = i;
|
|
|
|
return input;
|
|
}
|