From e1b0f94513ead34ec74ab4399e6513a802f81aab Mon Sep 17 00:00:00 2001 From: root Date: Sun, 11 May 2025 17:26:03 +0000 Subject: [PATCH] updated pr-agent best practices with auto analysis --- .pr_agent_accepted_suggestions.md | 119 ++++++++++++++++++++++++++++++ 1 file changed, 119 insertions(+) diff --git a/.pr_agent_accepted_suggestions.md b/.pr_agent_accepted_suggestions.md index d272945..15f9cb5 100644 --- a/.pr_agent_accepted_suggestions.md +++ b/.pr_agent_accepted_suggestions.md @@ -54,6 +54,123 @@ ___ + + +
                     PR 248 (2025-05-10)                     + +
+ + + +
[possible issue] Fix undefined variable reference + +___ + +✅ Fix undefined variable reference + +**The code references BIAS_MESSAGE which appears to be undefined in the provided code. This will cause a reference error when the function is called. Either define this variable or replace it with the actual bias message text.** + +[lib/language-inference-engine.js [198-215]](https://github.com/gnh1201/welsonjs/pull/248/files#diff-2ab61534138b13248e897d3b1aac2dbe3d8bd44ade898729c432d822f1623a58R198-R215) + +```diff + "wrap": function(model, message, temperature) { ++ const BIAS_MESSAGE = "Please provide a helpful response."; // Define BIAS_MESSAGE or import it from elsewhere + return { + "contents": [{ + "role": "user", // Changed "developer" to "user" for the initial prompt. The overall prompt is still intended to guide the model, so this is reasonable. + "parts": [{ + "text": BIAS_MESSAGE + }] + }, { + "role": "user", + "parts": [{ + "text": message + }] + }], + "generationConfig": { + "temperature": temperature + } + }; + }, +``` + + + +Suggestion importance[1-10]: 9 + +__ + +Why: The code references `BIAS_MESSAGE` which is undefined in the provided code snippet. This would cause a runtime error when the function is executed, completely breaking the Gemini provider functionality. + +___ + +
+ + + +
[possible issue] Add missing model selection + +___ + +✅ Add missing model selection + +**The code doesn't set a model for the Gemini provider before calling inference. This will likely cause the API call to fail as the model is required in the URL. Add a call to .setModel() with one of the available Gemini models.** + +[examples/honoai_gemini.ai.js [8-11]](https://github.com/gnh1201/welsonjs/pull/248/files#diff-e12676a9b01e80d4fffafc7fd625d5b90e63c80a18195cf82e69ae343027e49eR8-R11) + +```diff + var res = LIE.create() + .setProvider(provider) ++ .setModel("gemini-1.5-flash") + .inference(text, 0) + .join(' ') +``` + + + +Suggestion importance[1-10]: 8 + +__ + +Why: The example code doesn't set a model for the Gemini provider, which is required for the API call to work properly as seen in the URL construction. Without setting a model, the inference would fail. + +___ + +
+ + + +
[possible issue] Add type check before parsing + +___ + +✅ Add type check before parsing + +**The code assumes the response is always a string that needs parsing, but HTTP responses might already be parsed objects. This could cause errors if the response is already a JSON object. Add a type check before parsing.** + +[lib/language-inference-engine.js [217]](https://github.com/gnh1201/welsonjs/pull/248/files#diff-2ab61534138b13248e897d3b1aac2dbe3d8bd44ade898729c432d822f1623a58R217-R217) + +```diff +-response = JSON.parse(response) ++response = typeof response === 'string' ? JSON.parse(response) : response; +``` + + + +Suggestion importance[1-10]: 7 + +__ + +Why: The code assumes `response` is always a string that needs parsing, which could cause errors if it's already a JSON object. Adding a type check improves robustness and prevents potential runtime errors. + +___ + +
+ +___ + + +
                     PR 245 (2025-05-05)                    
@@ -136,6 +253,8 @@ ___ + +
                     PR 242 (2025-04-27)