update server

This commit is contained in:
LiangSong 2023-04-07 10:04:05 +08:00
parent bc16df4751
commit 1a731953da
4 changed files with 222 additions and 9 deletions

79
chat_server.py Normal file
View File

@ -0,0 +1,79 @@
"""
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-04-06 22:30:10
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-06 23:13:54
FilePath: /Open-Llama/chat_server.py
Description:
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
"""
import torch
import gradio as gr
import sentencepiece as spm
from dataset.tokenizer import Tokenizer
from transformers import LlamaForCausalLM, LlamaConfig
sp_model = spm.SentencePieceProcessor(
model_file="configs/10w_vocab_wudao5_pile10.model"
)
tokenizer = Tokenizer(sp_model)
raw_model = LlamaForCausalLM(
LlamaConfig(
vocab_size=tokenizer.vocab_size,
initializer_range=0.01,
pad_token_id=tokenizer.pad_id,
rms_norm_eps=1e-5,
hidden_dropout_prob=0.1,
attention_dropout_prob=0.1,
use_stable_embedding=True,
shared_input_output_embedding=True,
)
)
ckpt = torch.load(
"data/saved_ckpt/instruction_tuning_3_epochs/37001.pt", map_location="cpu"
)
raw_model.load_state_dict(ckpt)
raw_model.eval()
model = raw_model.cuda()
print("ready")
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
context = []
round = 0
for prompt, completion in history:
round += 1
if completion is None:
inputs = 'user:{}\nsystem:'.format(prompt)
inputs = tokenizer(inputs, return_tensors=True, add_special_tokens=False)
context.append(inputs['input_ids'])
else:
inputs = 'user:{}\nsystem:{}'.format(prompt, completion)
inputs = tokenizer(inputs, return_tensors=True, add_special_tokens=True)
context.append(inputs['input_ids'])
context = torch.cat(context, dim=-1)
context = context[:, -1024: ]
inputs_len = context.shape[1]
context = context.cuda()
pred = model.generate(input_ids=context, max_new_tokens=512, do_sample=True)
pred = pred[:, inputs_len:]
pred = tokenizer.decode(pred.cpu())[0]
bot_message = pred
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-20 21:39:47
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-05 22:35:01
LastEditTime: 2023-04-06 23:01:50
FilePath: /Open-Llama/dataset/tokenizer.py
Description:
@ -145,14 +145,34 @@ class Tokenizer:
out["attention_mask"] = attention_mask
return out
def decode(self, inputs):
def decode(self, inputs, max_rounds=None):
inputs = inputs.tolist()
out = []
for i in inputs:
if self.eos_id in i:
eos_idx = i.index(self.eos_id)
i = i[:eos_idx]
out.append(i)
for i, ids in enumerate(inputs):
count = 0
flag = False
for j, token in enumerate(ids):
if token == self.eos_id:
if max_rounds is None:
flag = True
break
elif isinstance(max_rounds, int):
if count < max_rounds:
count += 1
else:
flag = True
break
elif isinstance(max_rounds, list):
if count < max_rounds[i]:
count += 1
else:
flag = True
break
if flag:
ids = ids[: j]
else:
ids = ids
out.append(ids)
out = self.sp_model.Decode(out)
return out

View File

@ -2,7 +2,7 @@
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-31 13:26:15
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-04-05 21:47:54
LastEditTime: 2023-04-06 03:45:44
FilePath: /Open-Llama/server.py
Description:
@ -43,7 +43,7 @@ print("ready")
def question_answer(prompt):
print(prompt)
raw_inputs = "user:{}<s>system:".format(prompt)
raw_inputs = "user:{}\nsystem:".format(prompt)
inputs_len = len(raw_inputs)
inputs = tokenizer(raw_inputs, return_tensors=True, add_special_tokens=False)
for k, v in inputs.items():

114
speed_test.py Normal file
View File

@ -0,0 +1,114 @@
# import time
# import torch
# from colossalai.nn.optimizer import HybridAdam
# from deepspeed.ops.adam import FusedAdam
# from transformers import LlamaForCausalLM, LlamaConfig
# import lightning.pytorch as pl
# # define the LightningModule
# class LitAutoEncoder(pl.LightningModule):
# def __init__(self):
# super().__init__()
# def training_step(self, inputs, batch_idx):
# # training_step defines the train loop.
# # it is independent of forward
# # print(inputs.shape)
# out = self.model(input_ids=inputs, labels=inputs)
# loss = out.loss
# return loss
# def configure_optimizers(self):
# optimizer = HybridAdam(self.parameters(), lr=1e-5)
# return optimizer
# def configure_sharded_model(self):
# self.model = LlamaForCausalLM(
# LlamaConfig(
# vocab_size=32000,
# initializer_range=0.001,
# pad_token_id=0,
# rms_norm_eps=1e-5,
# hidden_dropout_prob=0.1,
# attention_dropout_prob=0.1,
# use_stable_embedding=False,
# shared_input_output_embedding=False,
# )
# )
# # init the autoencoder
# autoencoder = LitAutoEncoder()
# trainer = pl.Trainer(limit_train_batches=500, max_epochs=1, accelerator='gpu', devices=8, strategy="colossalai", precision=16)
# class FakeSet(torch.utils.data.Dataset):
# def __getitem__(self, idx):
# return torch.randint(0, 32000, (2048, ))
# def __len__(self):
# return 10000
# train_loader = torch.utils.data.DataLoader(FakeSet(), batch_size=1)
# trainer.fit(model=autoencoder, train_dataloaders=train_loader)
# import time
# import torch
# from accelerate import Accelerator
# from deepspeed.ops.adam import FusedAdam
# from transformers import LlamaForCausalLM, LlamaConfig
# accelerator = Accelerator()
# raw_model = LlamaForCausalLM(
# LlamaConfig(
# vocab_size=32000,
# initializer_range=0.001,
# pad_token_id=0,
# rms_norm_eps=1e-5,
# hidden_dropout_prob=0.1,
# attention_dropout_prob=0.1,
# use_stable_embedding=False,
# shared_input_output_embedding=False,
# )
# )
# optimizer = FusedAdam(raw_model.parameters(), lr=1e-5)
# import random
# import sentencepiece as spm
# from dataset.tokenizer import Tokenizer
# from dataset.data_iter import create_shard_kwargs, DataIter
# from torch.utils.data import DataLoader
# max_length = 2048
# tokenizer_model_path = 'configs/10w_vocab_wudao5_pile10.model'
# sp_model = spm.SentencePieceProcessor(model_file=tokenizer_model_path)
# tokenizer = Tokenizer(sp_model)
# paths = create_shard_kwargs(['1*'])
# random.shuffle(paths)
# data_set = DataIter(
# paths
# )
# train_loader = DataLoader(
# data_set,
# batch_size=1
# )
# model, optimizer, train_loader = accelerator.prepare(raw_model, optimizer, train_loader)
# inputs = torch.randint(0, 32000, (1, 2048), device=accelerator.device)
# for i in range(10):
# optimizer.zero_grad()
# out = model(input_ids=inputs, labels=inputs)
# loss = out.loss
# accelerator.backward(loss)
# optimizer.step()
# start_time = time.time()
# for i in range(500):
# optimizer.zero_grad()
# out = model(input_ids=inputs, labels=inputs)
# loss = out.loss
# accelerator.backward(loss)
# optimizer.step()
# end_time = time.time()
# accelerator.print(end_time - start_time)