add BucketBySequenceLengthDataset to accelerate training speed
This commit is contained in:
parent
23d307367f
commit
87776f4370
|
@ -67,6 +67,36 @@ def pretrain_collate_fn_gen(tokenizer, segment_max_length=1024):
|
|||
return pretrain_collate_fn
|
||||
|
||||
|
||||
class BucketBySequenceLengthDataset(torch.utils.data.IterableDataset):
|
||||
def __init__(self, generator, batch_size, bucket_size=32, max_length=1024):
|
||||
super().__init__()
|
||||
self.generator = generator
|
||||
self.batch_size = batch_size
|
||||
self.bucket_size = bucket_size
|
||||
self.bucket_num = math.ceil(max_length / bucket_size)
|
||||
self.buckets = [[] for _ in range(self.bucket_num)]
|
||||
self.bucket_idx = None
|
||||
|
||||
def __iter__(self):
|
||||
if self.batch_size <= 1:
|
||||
return self.generator
|
||||
def bucket_iter():
|
||||
if self.bucket_idx is not None:
|
||||
sample = self.buckets[self.bucket_idx].pop()
|
||||
if len(self.buckets[self.bucket_idx]) == 0:
|
||||
self.bucket_idx = None
|
||||
yield sample
|
||||
sample = next(self.generator) - 1
|
||||
sample_len = len(sample)
|
||||
bucket_idx = sample_len // self.bucket_size
|
||||
if len(self.buckets[bucket_idx]) == self.batch_size - 1:
|
||||
self.bucket_idx = bucket_idx
|
||||
yield sample
|
||||
else:
|
||||
self.buckets[bucket_idx].append(sample)
|
||||
return bucket_iter()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sentencepiece as spm
|
||||
from datasets import IterableDataset
|
||||
|
|
Loading…
Reference in New Issue
Block a user