132 lines
4.3 KiB
Python
132 lines
4.3 KiB
Python
"""
|
|
Author: LiangSong(sl12160010@gmail.com)
|
|
Date: 2023-03-17 20:41:25
|
|
LastEditors: LiangSong(sl12160010@gmail.com)
|
|
LastEditTime: 2023-03-26 23:07:56
|
|
FilePath: /Open-Llama/dataset/pretrain_dataset.py
|
|
Description:
|
|
|
|
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
|
"""
|
|
import math
|
|
import torch
|
|
|
|
|
|
def preprocess_wudao_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_wudao(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'id': 1, 'dataType': '百科', 'title': 'some title', 'content': 'some content'}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
total = line["title"] + "\n" + line["content"]
|
|
out = tokenizer(total)
|
|
input_ids = out["input_ids"]
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_wudao
|
|
|
|
|
|
def preprocess_the_pile_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_the_pile(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
total = line["text"]
|
|
out = tokenizer(total)
|
|
input_ids = out["input_ids"]
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_the_pile
|
|
|
|
|
|
def pretrain_collate_fn_gen(tokenizer, segment_max_length=1024):
|
|
"""
|
|
Organize data into tensors by padding based on the preset maximum length.
|
|
"""
|
|
pad_id = tokenizer.pad_id
|
|
|
|
def pretrain_collate_fn(batch):
|
|
input_ids = []
|
|
for i in batch:
|
|
input_len = len(i)
|
|
input_ids.append(i + [pad_id] * (segment_max_length - input_len))
|
|
inputs = {
|
|
"input_ids": torch.tensor(input_ids, dtype=torch.int64),
|
|
}
|
|
return inputs
|
|
|
|
return pretrain_collate_fn
|
|
|
|
|
|
class BucketBySequenceLengthDataset(torch.utils.data.IterableDataset):
|
|
def __init__(self, generator, batch_size, bucket_size=32, max_length=1024):
|
|
super().__init__()
|
|
self.generator = generator
|
|
self.batch_size = batch_size
|
|
self.bucket_size = bucket_size
|
|
self.bucket_num = math.ceil(max_length / bucket_size)
|
|
self.buckets = [[] for _ in range(self.bucket_num)]
|
|
self.bucket_idx = None
|
|
|
|
def __iter__(self):
|
|
if self.batch_size <= 1:
|
|
return self.generator
|
|
def bucket_iter():
|
|
if self.bucket_idx is not None:
|
|
sample = self.buckets[self.bucket_idx].pop()
|
|
if len(self.buckets[self.bucket_idx]) == 0:
|
|
self.bucket_idx = None
|
|
yield sample
|
|
sample = next(self.generator) - 1
|
|
sample_len = len(sample)
|
|
bucket_idx = sample_len // self.bucket_size
|
|
if len(self.buckets[bucket_idx]) == self.batch_size - 1:
|
|
self.bucket_idx = bucket_idx
|
|
yield sample
|
|
else:
|
|
self.buckets[bucket_idx].append(sample)
|
|
return bucket_iter()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sentencepiece as spm
|
|
from datasets import IterableDataset
|
|
from torch.utils.data import DataLoader
|
|
|
|
from dataset.tokenizer import Tokenizer
|
|
from dataset.data_iter import create_shard_kwargs, create_data_iter
|
|
|
|
sp_model = spm.SentencePieceProcessor(
|
|
model_file="configs/10w_vocab_wudao5_pile10.model"
|
|
)
|
|
tokenizer = Tokenizer(sp_model)
|
|
patterns = ["data/pretrain_data/part-*.jsonl.zst"]
|
|
paths = create_shard_kwargs(patterns)
|
|
transform_dict = {
|
|
"wudao": preprocess_wudao_gen(tokenizer),
|
|
"pile": preprocess_the_pile_gen(tokenizer),
|
|
}
|
|
data_set = IterableDataset.from_generator(
|
|
create_data_iter, gen_kwargs={"paths": paths, "transform_dict": transform_dict}
|
|
)
|
|
train_loader = DataLoader(
|
|
data_set,
|
|
batch_size=8,
|
|
num_workers=4,
|
|
collate_fn=pretrain_collate_fn_gen(tokenizer),
|
|
drop_last=True,
|
|
)
|
|
for batch in train_loader:
|
|
for k, v in batch.items():
|
|
print(k, v.shape)
|
|
break
|