add BucketBySequenceLengthDataset to accelerate training speed

This commit is contained in:
LiangSong 2023-03-28 10:05:27 +08:00
parent 23d307367f
commit 87776f4370

View File

@ -67,6 +67,36 @@ def pretrain_collate_fn_gen(tokenizer, segment_max_length=1024):
return pretrain_collate_fn return pretrain_collate_fn
class BucketBySequenceLengthDataset(torch.utils.data.IterableDataset):
def __init__(self, generator, batch_size, bucket_size=32, max_length=1024):
super().__init__()
self.generator = generator
self.batch_size = batch_size
self.bucket_size = bucket_size
self.bucket_num = math.ceil(max_length / bucket_size)
self.buckets = [[] for _ in range(self.bucket_num)]
self.bucket_idx = None
def __iter__(self):
if self.batch_size <= 1:
return self.generator
def bucket_iter():
if self.bucket_idx is not None:
sample = self.buckets[self.bucket_idx].pop()
if len(self.buckets[self.bucket_idx]) == 0:
self.bucket_idx = None
yield sample
sample = next(self.generator) - 1
sample_len = len(sample)
bucket_idx = sample_len // self.bucket_size
if len(self.buckets[bucket_idx]) == self.batch_size - 1:
self.bucket_idx = bucket_idx
yield sample
else:
self.buckets[bucket_idx].append(sample)
return bucket_iter()
if __name__ == "__main__": if __name__ == "__main__":
import sentencepiece as spm import sentencepiece as spm
from datasets import IterableDataset from datasets import IterableDataset