update readme

This commit is contained in:
LiangSong 2023-04-29 12:06:55 +08:00
parent 4c5e50e4aa
commit a2816bd23d
2 changed files with 31 additions and 12 deletions

View File

@ -2,27 +2,37 @@
* @Author: LiangSong(sl12160010@gmail.com)
* @Date: 2023-03-10 21:18:35
* @LastEditors: LiangSong(sl12160010@gmail.com)
* @LastEditTime: 2023-04-29 11:41:10
* @LastEditTime: 2023-04-29 12:06:24
* @FilePath: /Open-Llama/README.md
* @Description:
*
* Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
-->
[**中文**](./README.md) | [**English**](./README_en.md)
# Open-Llama
[English README](https://github.com/Bayes-Song/Open-Llama/blob/main/README_en.md)
<p align="center">
<img alt="GitHub" src="https://img.shields.io/github/license/s-JoL/Open-Llama.svg?color=blue&style=flat-square">
<img alt="GitHub release (latest by date)" src="https://img.shields.io/github/v/release/s-JoL/Open-Llama">
<img alt="GitHub top language" src="https://img.shields.io/github/languages/top/s-JoL/Open-Llama">
<img alt="GitHub last commit" src="https://img.shields.io/github/last-commit/s-JoL/Open-Llama">
</p>
Open-Llama是一个开源项目提供了一整套用于构建大型语言模型的训练流程从数据集准备到分词、预训练、指令调优以及强化学习技术 RLHF。
**可从[Demo](http://home.ustc.edu.cn/~sl9292/)直接试用本模型。**
## **效果**
## **主要内容**
**采用FastChat项目相同方法测评Open-Llama的效果和GPT3.5的效果对比经过测试在中文问题上可以达到GPT3.5 84%的水平。**
- **支持Transformers/HuggingFace直接调用。** 经过Instruct-tuning的CheckPoint已开源在[HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1)。
**训练速度达到3620 token/s快于Llama原文中的3370 token/s达到目前sota的水平。**
- **采用FastChat项目相同方法测评Open-Llama的效果和GPT3.5的效果对比经过测试在中文问题上可以达到GPT3.5 84%的水平。**
经过Instruct-tuning的CheckPoint已开源在[HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1)。使用ckpt需要先用下面命令安装最新版本Transformers
- **训练速度达到3620 token/s快于Llama原文中的3370 token/s达到目前sota的水平。**
使用ckpt需要先用下面命令安装最新版本Transformers
``` python
pip install git+https://github.com/huggingface/transformers.git

View File

@ -2,27 +2,36 @@
* @Author: LiangSong(sl12160010@gmail.com)
* @Date: 2023-03-10 21:18:35
* @LastEditors: LiangSong(sl12160010@gmail.com)
* @LastEditTime: 2023-04-29 11:41:20
* @LastEditTime: 2023-04-29 12:06:05
* @FilePath: /Open-Llama/README_en.md
* @Description:
*
* Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
-->
[**中文**](./README.md) | [**English**](./README_en.md)
# Open-Llama
[English README](https://github.com/Bayes-Song/Open-Llama/blob/main/README_en.md)
<p align="center">
<img alt="GitHub" src="https://img.shields.io/github/license/s-JoL/Open-Llama.svg?color=blue&style=flat-square">
<img alt="GitHub release (latest by date)" src="https://img.shields.io/github/v/release/s-JoL/Open-Llama">
<img alt="GitHub top language" src="https://img.shields.io/github/languages/top/s-JoL/Open-Llama">
<img alt="GitHub last commit" src="https://img.shields.io/github/last-commit/s-JoL/Open-Llama">
</p>
Open-Llama is an open-source project that offers a complete training pipeline for building large language models, ranging from dataset preparation to tokenization, pre-training, prompt tuning, and the reinforcement learning technique RLHF.
**You can try this model directly from the [Demo](http://home.ustc.edu.cn/~sl9292/).**
## **Performance**
## **Main contents**
**By adopting the same evaluation method as the FastChat project, Open-Llama's performance is compared to GPT3.5s. After testing, it can reach 84% of GPT3.5's performance on Chinese questions.**
- **Support Transformers/HuggingFace.** The CheckPoint after Instruct-tuning is open-source on [HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1).
**The training speed reaches 3620 tokens/s, faster than the 3370 tokens/s reported in the original Llama paper, reaching the current state-of-the-art level.**
- **By adopting the same evaluation method as the FastChat project, Open-Llama's performance is compared to GPT3.5s. After testing, it can reach 84% of GPT3.5's performance on Chinese questions.**
The CheckPoint after Instruct-tuning is open-source on [HuggingFace: s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). To use the CheckPoint, first, install the latest version of Transformers with the following command:
- **The training speed reaches 3620 tokens/s, faster than the 3370 tokens/s reported in the original Llama paper, reaching the current state-of-the-art level.**
To use the CheckPoint, first, install the latest version of Transformers with the following command:
``` python
pip install git+https://github.com/huggingface/transformers.git