update format

This commit is contained in:
LiangSong 2023-04-07 23:20:20 +08:00
parent f4ba4b6ff2
commit c67d365db3
3 changed files with 15 additions and 124 deletions

View File

@ -32,13 +32,15 @@ raw_model = LlamaForCausalLM(
)
)
ckpt = torch.load(
"data/saved_ckpt/instruction_tuning_math_code_multiturn/36001.pt", map_location="cpu"
"data/saved_ckpt/instruction_tuning_math_code_multiturn/36001.pt",
map_location="cpu",
)
raw_model.load_state_dict(ckpt)
raw_model.eval()
model = raw_model.cuda()
print("ready")
def parse_codeblock(text):
lines = text.split("\n")
for i, line in enumerate(lines):
@ -46,12 +48,13 @@ def parse_codeblock(text):
if line != "```":
lines[i] = f'<pre><code class="{lines[i][3:]}">'
else:
lines[i] = '</code></pre>'
lines[i] = "</code></pre>"
else:
if i > 0:
lines[i] = "<br/>" + line.replace("<", "&lt;").replace(">", "&gt;")
return "".join(lines)
with gr.Blocks() as demo:
gr.Markdown(
"""
@ -75,15 +78,17 @@ with gr.Blocks() as demo:
for prompt, completion in history:
round += 1
if completion is None:
inputs = 'user:{}\nsystem:'.format(prompt)
inputs = tokenizer(inputs, return_tensors=True, add_special_tokens=False)
context.append(inputs['input_ids'])
inputs = "user:{}\nsystem:".format(prompt)
inputs = tokenizer(
inputs, return_tensors=True, add_special_tokens=False
)
context.append(inputs["input_ids"])
else:
inputs = 'user:{}\nsystem:{}'.format(prompt, completion)
inputs = "user:{}\nsystem:{}".format(prompt, completion)
inputs = tokenizer(inputs, return_tensors=True, add_special_tokens=True)
context.append(inputs['input_ids'])
context.append(inputs["input_ids"])
context = torch.cat(context, dim=-1)
context = context[:, -1024: ]
context = context[:, -1024:]
inputs_len = context.shape[1]
context = context.cuda()
pred = model.generate(input_ids=context, max_new_tokens=512, do_sample=True)
@ -99,7 +104,7 @@ with gr.Blocks() as demo:
)
clear.click(lambda: None, None, chatbot, queue=False)
gr.Markdown(
"""
"""
当前体验服务生成的所有内容都是由人工智能模型生成我们对其生成内容的准确性完整性和功能性不做任何保证并且其生成的内容不代表我们的态度或观点
联系方式: sl12160010@gmail.com 对于该项目有任何意见和建议都欢迎联系我.

View File

@ -169,7 +169,7 @@ class Tokenizer:
flag = True
break
if flag:
ids = ids[: j]
ids = ids[:j]
else:
ids = ids
out.append(ids)

View File

@ -1,114 +0,0 @@
# import time
# import torch
# from colossalai.nn.optimizer import HybridAdam
# from deepspeed.ops.adam import FusedAdam
# from transformers import LlamaForCausalLM, LlamaConfig
# import lightning.pytorch as pl
# # define the LightningModule
# class LitAutoEncoder(pl.LightningModule):
# def __init__(self):
# super().__init__()
# def training_step(self, inputs, batch_idx):
# # training_step defines the train loop.
# # it is independent of forward
# # print(inputs.shape)
# out = self.model(input_ids=inputs, labels=inputs)
# loss = out.loss
# return loss
# def configure_optimizers(self):
# optimizer = HybridAdam(self.parameters(), lr=1e-5)
# return optimizer
# def configure_sharded_model(self):
# self.model = LlamaForCausalLM(
# LlamaConfig(
# vocab_size=32000,
# initializer_range=0.001,
# pad_token_id=0,
# rms_norm_eps=1e-5,
# hidden_dropout_prob=0.1,
# attention_dropout_prob=0.1,
# use_stable_embedding=False,
# shared_input_output_embedding=False,
# )
# )
# # init the autoencoder
# autoencoder = LitAutoEncoder()
# trainer = pl.Trainer(limit_train_batches=500, max_epochs=1, accelerator='gpu', devices=8, strategy="colossalai", precision=16)
# class FakeSet(torch.utils.data.Dataset):
# def __getitem__(self, idx):
# return torch.randint(0, 32000, (2048, ))
# def __len__(self):
# return 10000
# train_loader = torch.utils.data.DataLoader(FakeSet(), batch_size=1)
# trainer.fit(model=autoencoder, train_dataloaders=train_loader)
# import time
# import torch
# from accelerate import Accelerator
# from deepspeed.ops.adam import FusedAdam
# from transformers import LlamaForCausalLM, LlamaConfig
# accelerator = Accelerator()
# raw_model = LlamaForCausalLM(
# LlamaConfig(
# vocab_size=32000,
# initializer_range=0.001,
# pad_token_id=0,
# rms_norm_eps=1e-5,
# hidden_dropout_prob=0.1,
# attention_dropout_prob=0.1,
# use_stable_embedding=False,
# shared_input_output_embedding=False,
# )
# )
# optimizer = FusedAdam(raw_model.parameters(), lr=1e-5)
# import random
# import sentencepiece as spm
# from dataset.tokenizer import Tokenizer
# from dataset.data_iter import create_shard_kwargs, DataIter
# from torch.utils.data import DataLoader
# max_length = 2048
# tokenizer_model_path = 'configs/10w_vocab_wudao5_pile10.model'
# sp_model = spm.SentencePieceProcessor(model_file=tokenizer_model_path)
# tokenizer = Tokenizer(sp_model)
# paths = create_shard_kwargs(['1*'])
# random.shuffle(paths)
# data_set = DataIter(
# paths
# )
# train_loader = DataLoader(
# data_set,
# batch_size=1
# )
# model, optimizer, train_loader = accelerator.prepare(raw_model, optimizer, train_loader)
# inputs = torch.randint(0, 32000, (1, 2048), device=accelerator.device)
# for i in range(10):
# optimizer.zero_grad()
# out = model(input_ids=inputs, labels=inputs)
# loss = out.loss
# accelerator.backward(loss)
# optimizer.step()
# start_time = time.time()
# for i in range(500):
# optimizer.zero_grad()
# out = model(input_ids=inputs, labels=inputs)
# loss = out.loss
# accelerator.backward(loss)
# optimizer.step()
# end_time = time.time()
# accelerator.print(end_time - start_time)