update format
This commit is contained in:
parent
f4ba4b6ff2
commit
c67d365db3
|
@ -32,13 +32,15 @@ raw_model = LlamaForCausalLM(
|
|||
)
|
||||
)
|
||||
ckpt = torch.load(
|
||||
"data/saved_ckpt/instruction_tuning_math_code_multiturn/36001.pt", map_location="cpu"
|
||||
"data/saved_ckpt/instruction_tuning_math_code_multiturn/36001.pt",
|
||||
map_location="cpu",
|
||||
)
|
||||
raw_model.load_state_dict(ckpt)
|
||||
raw_model.eval()
|
||||
model = raw_model.cuda()
|
||||
print("ready")
|
||||
|
||||
|
||||
def parse_codeblock(text):
|
||||
lines = text.split("\n")
|
||||
for i, line in enumerate(lines):
|
||||
|
@ -46,12 +48,13 @@ def parse_codeblock(text):
|
|||
if line != "```":
|
||||
lines[i] = f'<pre><code class="{lines[i][3:]}">'
|
||||
else:
|
||||
lines[i] = '</code></pre>'
|
||||
lines[i] = "</code></pre>"
|
||||
else:
|
||||
if i > 0:
|
||||
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">")
|
||||
return "".join(lines)
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown(
|
||||
"""
|
||||
|
@ -75,15 +78,17 @@ with gr.Blocks() as demo:
|
|||
for prompt, completion in history:
|
||||
round += 1
|
||||
if completion is None:
|
||||
inputs = 'user:{}\nsystem:'.format(prompt)
|
||||
inputs = tokenizer(inputs, return_tensors=True, add_special_tokens=False)
|
||||
context.append(inputs['input_ids'])
|
||||
inputs = "user:{}\nsystem:".format(prompt)
|
||||
inputs = tokenizer(
|
||||
inputs, return_tensors=True, add_special_tokens=False
|
||||
)
|
||||
context.append(inputs["input_ids"])
|
||||
else:
|
||||
inputs = 'user:{}\nsystem:{}'.format(prompt, completion)
|
||||
inputs = "user:{}\nsystem:{}".format(prompt, completion)
|
||||
inputs = tokenizer(inputs, return_tensors=True, add_special_tokens=True)
|
||||
context.append(inputs['input_ids'])
|
||||
context.append(inputs["input_ids"])
|
||||
context = torch.cat(context, dim=-1)
|
||||
context = context[:, -1024: ]
|
||||
context = context[:, -1024:]
|
||||
inputs_len = context.shape[1]
|
||||
context = context.cuda()
|
||||
pred = model.generate(input_ids=context, max_new_tokens=512, do_sample=True)
|
||||
|
@ -99,7 +104,7 @@ with gr.Blocks() as demo:
|
|||
)
|
||||
clear.click(lambda: None, None, chatbot, queue=False)
|
||||
gr.Markdown(
|
||||
"""
|
||||
"""
|
||||
当前体验服务生成的所有内容都是由人工智能模型生成,我们对其生成内容的准确性、完整性和功能性不做任何保证,并且其生成的内容不代表我们的态度或观点。
|
||||
|
||||
联系方式: sl12160010@gmail.com 对于该项目有任何意见和建议都欢迎联系我.
|
||||
|
|
|
@ -169,7 +169,7 @@ class Tokenizer:
|
|||
flag = True
|
||||
break
|
||||
if flag:
|
||||
ids = ids[: j]
|
||||
ids = ids[:j]
|
||||
else:
|
||||
ids = ids
|
||||
out.append(ids)
|
||||
|
|
114
speed_test.py
114
speed_test.py
|
@ -1,114 +0,0 @@
|
|||
# import time
|
||||
# import torch
|
||||
# from colossalai.nn.optimizer import HybridAdam
|
||||
# from deepspeed.ops.adam import FusedAdam
|
||||
# from transformers import LlamaForCausalLM, LlamaConfig
|
||||
# import lightning.pytorch as pl
|
||||
|
||||
# # define the LightningModule
|
||||
# class LitAutoEncoder(pl.LightningModule):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
|
||||
# def training_step(self, inputs, batch_idx):
|
||||
# # training_step defines the train loop.
|
||||
# # it is independent of forward
|
||||
# # print(inputs.shape)
|
||||
# out = self.model(input_ids=inputs, labels=inputs)
|
||||
# loss = out.loss
|
||||
# return loss
|
||||
|
||||
# def configure_optimizers(self):
|
||||
# optimizer = HybridAdam(self.parameters(), lr=1e-5)
|
||||
# return optimizer
|
||||
|
||||
# def configure_sharded_model(self):
|
||||
# self.model = LlamaForCausalLM(
|
||||
# LlamaConfig(
|
||||
# vocab_size=32000,
|
||||
# initializer_range=0.001,
|
||||
# pad_token_id=0,
|
||||
# rms_norm_eps=1e-5,
|
||||
# hidden_dropout_prob=0.1,
|
||||
# attention_dropout_prob=0.1,
|
||||
# use_stable_embedding=False,
|
||||
# shared_input_output_embedding=False,
|
||||
# )
|
||||
# )
|
||||
|
||||
|
||||
# # init the autoencoder
|
||||
# autoencoder = LitAutoEncoder()
|
||||
# trainer = pl.Trainer(limit_train_batches=500, max_epochs=1, accelerator='gpu', devices=8, strategy="colossalai", precision=16)
|
||||
# class FakeSet(torch.utils.data.Dataset):
|
||||
# def __getitem__(self, idx):
|
||||
# return torch.randint(0, 32000, (2048, ))
|
||||
|
||||
# def __len__(self):
|
||||
# return 10000
|
||||
# train_loader = torch.utils.data.DataLoader(FakeSet(), batch_size=1)
|
||||
# trainer.fit(model=autoencoder, train_dataloaders=train_loader)
|
||||
|
||||
|
||||
# import time
|
||||
# import torch
|
||||
# from accelerate import Accelerator
|
||||
# from deepspeed.ops.adam import FusedAdam
|
||||
# from transformers import LlamaForCausalLM, LlamaConfig
|
||||
|
||||
|
||||
# accelerator = Accelerator()
|
||||
# raw_model = LlamaForCausalLM(
|
||||
# LlamaConfig(
|
||||
# vocab_size=32000,
|
||||
# initializer_range=0.001,
|
||||
# pad_token_id=0,
|
||||
# rms_norm_eps=1e-5,
|
||||
# hidden_dropout_prob=0.1,
|
||||
# attention_dropout_prob=0.1,
|
||||
# use_stable_embedding=False,
|
||||
# shared_input_output_embedding=False,
|
||||
# )
|
||||
# )
|
||||
# optimizer = FusedAdam(raw_model.parameters(), lr=1e-5)
|
||||
|
||||
# import random
|
||||
# import sentencepiece as spm
|
||||
# from dataset.tokenizer import Tokenizer
|
||||
# from dataset.data_iter import create_shard_kwargs, DataIter
|
||||
# from torch.utils.data import DataLoader
|
||||
|
||||
# max_length = 2048
|
||||
# tokenizer_model_path = 'configs/10w_vocab_wudao5_pile10.model'
|
||||
# sp_model = spm.SentencePieceProcessor(model_file=tokenizer_model_path)
|
||||
# tokenizer = Tokenizer(sp_model)
|
||||
|
||||
# paths = create_shard_kwargs(['1*'])
|
||||
# random.shuffle(paths)
|
||||
# data_set = DataIter(
|
||||
# paths
|
||||
# )
|
||||
# train_loader = DataLoader(
|
||||
# data_set,
|
||||
# batch_size=1
|
||||
# )
|
||||
|
||||
# model, optimizer, train_loader = accelerator.prepare(raw_model, optimizer, train_loader)
|
||||
# inputs = torch.randint(0, 32000, (1, 2048), device=accelerator.device)
|
||||
|
||||
|
||||
# for i in range(10):
|
||||
# optimizer.zero_grad()
|
||||
# out = model(input_ids=inputs, labels=inputs)
|
||||
# loss = out.loss
|
||||
# accelerator.backward(loss)
|
||||
# optimizer.step()
|
||||
# start_time = time.time()
|
||||
# for i in range(500):
|
||||
# optimizer.zero_grad()
|
||||
# out = model(input_ids=inputs, labels=inputs)
|
||||
# loss = out.loss
|
||||
# accelerator.backward(loss)
|
||||
# optimizer.step()
|
||||
# end_time = time.time()
|
||||
# accelerator.print(end_time - start_time)
|
Loading…
Reference in New Issue
Block a user