Open-Llama/speed_test.py
2023-04-07 10:04:05 +08:00

114 lines
3.4 KiB
Python

# import time
# import torch
# from colossalai.nn.optimizer import HybridAdam
# from deepspeed.ops.adam import FusedAdam
# from transformers import LlamaForCausalLM, LlamaConfig
# import lightning.pytorch as pl
# # define the LightningModule
# class LitAutoEncoder(pl.LightningModule):
# def __init__(self):
# super().__init__()
# def training_step(self, inputs, batch_idx):
# # training_step defines the train loop.
# # it is independent of forward
# # print(inputs.shape)
# out = self.model(input_ids=inputs, labels=inputs)
# loss = out.loss
# return loss
# def configure_optimizers(self):
# optimizer = HybridAdam(self.parameters(), lr=1e-5)
# return optimizer
# def configure_sharded_model(self):
# self.model = LlamaForCausalLM(
# LlamaConfig(
# vocab_size=32000,
# initializer_range=0.001,
# pad_token_id=0,
# rms_norm_eps=1e-5,
# hidden_dropout_prob=0.1,
# attention_dropout_prob=0.1,
# use_stable_embedding=False,
# shared_input_output_embedding=False,
# )
# )
# # init the autoencoder
# autoencoder = LitAutoEncoder()
# trainer = pl.Trainer(limit_train_batches=500, max_epochs=1, accelerator='gpu', devices=8, strategy="colossalai", precision=16)
# class FakeSet(torch.utils.data.Dataset):
# def __getitem__(self, idx):
# return torch.randint(0, 32000, (2048, ))
# def __len__(self):
# return 10000
# train_loader = torch.utils.data.DataLoader(FakeSet(), batch_size=1)
# trainer.fit(model=autoencoder, train_dataloaders=train_loader)
# import time
# import torch
# from accelerate import Accelerator
# from deepspeed.ops.adam import FusedAdam
# from transformers import LlamaForCausalLM, LlamaConfig
# accelerator = Accelerator()
# raw_model = LlamaForCausalLM(
# LlamaConfig(
# vocab_size=32000,
# initializer_range=0.001,
# pad_token_id=0,
# rms_norm_eps=1e-5,
# hidden_dropout_prob=0.1,
# attention_dropout_prob=0.1,
# use_stable_embedding=False,
# shared_input_output_embedding=False,
# )
# )
# optimizer = FusedAdam(raw_model.parameters(), lr=1e-5)
# import random
# import sentencepiece as spm
# from dataset.tokenizer import Tokenizer
# from dataset.data_iter import create_shard_kwargs, DataIter
# from torch.utils.data import DataLoader
# max_length = 2048
# tokenizer_model_path = 'configs/10w_vocab_wudao5_pile10.model'
# sp_model = spm.SentencePieceProcessor(model_file=tokenizer_model_path)
# tokenizer = Tokenizer(sp_model)
# paths = create_shard_kwargs(['1*'])
# random.shuffle(paths)
# data_set = DataIter(
# paths
# )
# train_loader = DataLoader(
# data_set,
# batch_size=1
# )
# model, optimizer, train_loader = accelerator.prepare(raw_model, optimizer, train_loader)
# inputs = torch.randint(0, 32000, (1, 2048), device=accelerator.device)
# for i in range(10):
# optimizer.zero_grad()
# out = model(input_ids=inputs, labels=inputs)
# loss = out.loss
# accelerator.backward(loss)
# optimizer.step()
# start_time = time.time()
# for i in range(500):
# optimizer.zero_grad()
# out = model(input_ids=inputs, labels=inputs)
# loss = out.loss
# accelerator.backward(loss)
# optimizer.step()
# end_time = time.time()
# accelerator.print(end_time - start_time)