179 lines
6.6 KiB
Python
179 lines
6.6 KiB
Python
"""
|
|
Author: LiangSong(sl12160010@gmail.com)
|
|
Date: 2023-03-30 21:02:00
|
|
LastEditors: LiangSong(sl12160010@gmail.com)
|
|
LastEditTime: 2023-04-06 03:33:27
|
|
FilePath: /Open-Llama/dataset/instruction_dataset.py
|
|
Description:
|
|
|
|
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
|
|
"""
|
|
import math
|
|
|
|
|
|
def preprocess_self_instruction_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_self_instruction(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'prompt': 'Explain the origin of life on earth. Output:', 'completion': 'Life on Earth is believed to have'}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
prompt = line["prompt"]
|
|
if prompt.endswith("Output:"):
|
|
prompt = prompt[:-7]
|
|
total = "user:{}\nsystem:{}".format(prompt.strip(), line["completion"].strip())
|
|
out = tokenizer(total)
|
|
input_ids = out["input_ids"]
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_self_instruction
|
|
|
|
|
|
def preprocess_belle_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_belle(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
prompt = line["instruction"].replace("\\n", "")
|
|
prompt = prompt.strip("")
|
|
|
|
completion = line["output"].replace("\\n", "")
|
|
completion = completion.strip("")
|
|
total = "user:{}\nsystem:{}".format(prompt, completion)
|
|
out = tokenizer(total)
|
|
input_ids = out["input_ids"]
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_belle
|
|
|
|
|
|
def preprocess_belle_multiturn_chat_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_belle_multiturn_chat(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
prompt = line["instruction"].replace("\\n", "")
|
|
prompt = prompt.strip("")
|
|
|
|
completion = line["output"].replace("\\n", "")
|
|
completion = completion.strip("")
|
|
chats = prompt + completion
|
|
chats = chats.split("Human:")
|
|
input_ids = []
|
|
for chat in chats:
|
|
if chat.strip() == "":
|
|
continue
|
|
res = chat.split("Assistant:")
|
|
if len(res) != 2:
|
|
continue
|
|
prompt, completion = res
|
|
prompt = prompt.strip()
|
|
completion = completion.strip()
|
|
chat = "user:{}\nsystem:{}".format(prompt, completion)
|
|
out = tokenizer(chat)
|
|
input_ids.extend(out["input_ids"])
|
|
if len(input_ids) == 0:
|
|
return None
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_belle_multiturn_chat
|
|
|
|
|
|
def preprocess_sharegpt_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_sharegpt(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
chats = line["conversations"]
|
|
if chats[0]["from"] != "human":
|
|
chats = chats[1:]
|
|
input_ids = []
|
|
for i in range(len(chats) // 2):
|
|
prompt = chats[2 * i]
|
|
completion = chats[2 * i + 1]
|
|
if not (prompt["from"] == "human" and completion["from"] == "gpt"):
|
|
continue
|
|
prompt = prompt["value"]
|
|
prompt = prompt.strip()
|
|
completion = completion["value"]
|
|
completion = completion.strip()
|
|
chat = "user:{}\nsystem:{}".format(prompt, completion)
|
|
out = tokenizer(chat)
|
|
input_ids.extend(out["input_ids"])
|
|
if input_ids == []:
|
|
return None
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_sharegpt
|
|
|
|
|
|
def preprocess_instruct_code_gen(tokenizer, segment_max_length=1024):
|
|
def preprocess_instruct_code(line):
|
|
"""
|
|
The format of the data is roughly as follows.
|
|
{'text': 'some text', 'meta': {'pile_set_name': 'Github'}}
|
|
Split the data based on the tokenized length according to the maximum length.
|
|
"""
|
|
prompt = line["instruction"].replace("\\n", "")
|
|
prompt = prompt.strip("")
|
|
|
|
completion = line["answer"].replace("\\n", "")
|
|
completion = completion.strip("")
|
|
total = "user:{}\nsystem:{}".format(prompt, completion)
|
|
out = tokenizer(total)
|
|
input_ids = out["input_ids"]
|
|
return [
|
|
input_ids[i * segment_max_length : (i + 1) * segment_max_length]
|
|
for i in range(math.ceil(len(input_ids) / segment_max_length))
|
|
]
|
|
|
|
return preprocess_instruct_code
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sentencepiece as spm
|
|
|
|
from dataset.tokenizer import Tokenizer
|
|
from dataset.data_iter import create_shard_kwargs, DataIter
|
|
|
|
sp_model = spm.SentencePieceProcessor(
|
|
model_file="configs/10w_vocab_wudao5_pile10.model"
|
|
)
|
|
tokenizer = Tokenizer(sp_model)
|
|
patterns = ["data/instruction_data/part-belle_multiturn_chat_0.8M-*.jsonl.zst"]
|
|
paths = create_shard_kwargs(patterns)
|
|
transform_dict = {
|
|
"self_instruct": preprocess_self_instruction_gen(tokenizer),
|
|
"belle_1M": preprocess_belle_gen(tokenizer),
|
|
"belle_0.5M": preprocess_belle_gen(tokenizer),
|
|
"belle_school_math_0.25M": preprocess_belle_gen(tokenizer),
|
|
"belle_multiturn_chat_0.8M": preprocess_belle_multiturn_chat_gen(tokenizer),
|
|
"instruct_to_code": preprocess_instruct_code_gen(tokenizer),
|
|
"sharegpt_90K": preprocess_sharegpt_gen(tokenizer),
|
|
}
|
|
data_set = DataIter(
|
|
paths, transform_dict=transform_dict, concat_docs=True, max_length=1024
|
|
)
|
|
for i, sample in enumerate(data_set):
|
|
print(sp_model.decode(sample))
|
|
if i == 1:
|
|
break
|