Enhance the GC subtyping checks:
- Fix issues in the type equivalence check
- Enable the recursive type subtyping check
- Add a equivalence type flag in defined types of aot file, if there is an
equivalence type before, just set it true and re-use the previous type
- Normalize the defined types for interpreter and AOT
- Enable spec test case type-equivalence.wast and type-subtyping.wast,
and enable some commented cases
- Enable set WAMR_BUILD_SANITIZER from cmake variable
- Add new API wasm_runtime_load_ex() in wasm_export.h
and wasm_module_new_ex in wasm_c_api.h
- Put aot_create_perf_map() into a separated file aot_perf_map.c
- In perf.map, function names include user specified module name
- Enhance the script to help flamegraph generations
Fix the warnings and issues reported:
- in Windows platform
- by CodeQL static code analyzing
- by Coverity static code analyzing
And update CodeQL script to build exception handling and memory features.
The symbols in windows 32-bit may start with '_' and can not be found
when resolving the relocations to them. This PR ignores the underscore
when handling the relocation name of AOT_FUNC_INTERNAL_PREFIX, and
redirect the relocation with name "_aot_stack_sizes" to the relocation with
name ".aot_stack_sizes" (the name of the data section created).
ps.
https://github.com/bytecodealliance/wasm-micro-runtime/issues/3216
The stack profiler `aot_func#xxx` calls the wrapped function of `aot_func_internal#xxx`
by using symbol reference, but in some platform like xtensa, it’s translated into a native
long call, which needs to resolve the indirect address by relocation and breaks the XIP
feature which requires the eliminating of relocation.
The solution is to change the symbol reference into an indirect call through the lookup
table, the code will be like this:
```llvm
call_wrapped_func: ; preds = %stack_bound_check_block
%func_addr1 = getelementptr inbounds ptr, ptr %func_ptrs_ptr, i32 75
%func_tmp2 = load ptr, ptr %func_addr1, align 4
tail call void %func_tmp2(ptr %exec_env)
ret void
```
Implement the GC (Garbage Collection) feature for interpreter mode,
AOT mode and LLVM-JIT mode, and support most features of the latest
spec proposal, and also enable the stringref feature.
Use `cmake -DWAMR_BUILD_GC=1/0` to enable/disable the feature,
and `wamrc --enable-gc` to generate the AOT file with GC supported.
And update the AOT file version from 2 to 3 since there are many AOT
ABI breaks, including the changes of AOT file format, the changes of
AOT module/memory instance layouts, the AOT runtime APIs for the
AOT code to invoke and so on.
The content in custom name section is changed after loaded since the strings
are adjusted with '\0' appended, the emitted AOT file then cannot be loaded.
The PR disables changing the content for AOT compiler to resolve it.
And disable emitting custom name section for `wamrc --enable-dump-call-stack`,
instead, use `wamrc --emit-custom-sections=name` to emit it.
In some scenarios there may be lots of callings to AOT/JIT functions from the
host embedder, which expects good performance for the calling process, while
in the current implementation, runtime calls the wasm_runtime_invoke_native
to prepare the array of registers and stacks for the invokeNative assemble code,
and the latter then puts the elements in the array to physical registers and
native stacks and calls the AOT/JIT function, there may be many data copying
and handlings which impact the performance.
This PR registers some quick AOT/JIT entries for some simple wasm signatures,
and let runtime call the entry to directly invoke the AOT/JIT function instead of
calling wasm_runtime_invoke_native, which speedups the calling process.
We may extend the mechanism next to allow the developer to register his quick
AOT/JIT entries to speedup the calling process of invoking the AOT/JIT functions
for some specific signatures.
And refactor the original perf support
- use WAMR_BUILD_LINUX_PERF as the cmake compilation control
- use WASM_ENABLE_LINUX_PERF as the compiler macro
- use `wamrc --enable-linux-perf` to generate aot file which contains fp operations
- use `iwasm --enable-linux-perf` to create perf map for `perf record`
Currently, `data.drop` instruction is implemented by directly modifying the
underlying module. It breaks use cases where you have multiple instances
sharing a single loaded module. `elem.drop` has the same problem too.
This PR fixes the issue by keeping track of which data/elem segments have
been dropped by using bitmaps for each module instances separately, and
add a sample to demonstrate the issue and make the CI run it.
Also add a missing check of dropped elements to the fast-jit `table.init`.
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2735
Fixes: https://github.com/bytecodealliance/wasm-micro-runtime/issues/2772
Add an extra argument `os_file_handle file` for `os_mmap` to support
mapping file from a file fd, and remove `os_get_invalid_handle` from
`posix_file.c` and `win_file.c`, instead, add it in the `platform_internal.h`
files to remove the dependency on libc-wasi.
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
Support muti-module for AOT mode, currently only implement the
multi-module's function import feature for AOT, the memory/table/
global import are not implemented yet.
And update wamr-test-suites scripts, multi-module sample and some
CIs accordingly.
When AOT out of bound linear memory access or stack overflow occurs, the call stack of
AOT functions cannot be unwound currently, so from the exception handler, runtime
cannot jump back into the place that calls the AOT function.
We temporarily skip the current instruction and let AOT code continue to run and return
to caller as soon as possible. And use the zydis library the decode the current instruction
to get its size.
And remove using RtlAddFunctionTable to register the AOT functions since it doesn't work
currently.
esp32-s3's instruction memory and data memory can be accessed through mutual mirroring way,
so we define a new feature named as WASM_MEM_DUAL_BUS_MIRROR.
LLVM PGO (Profile-Guided Optimization) allows the compiler to better optimize code
for how it actually runs. This PR implements the AOT static PGO, and is tested on
Linux x86-64 and x86-32. The basic steps are:
1. Use `wamrc --enable-llvm-pgo -o <aot_file_of_pgo> <wasm_file>`
to generate an instrumented aot file.
2. Compile iwasm with `cmake -DWAMR_BUILD_STATIC_PGO=1` and run
`iwasm --gen-prof-file=<raw_profile_file> <aot_file_of_pgo>`
to generate the raw profile file.
3. Run `llvm-profdata merge -output=<profile_file> <raw_profile_file>`
to merge the raw profile file into the profile file.
4. Run `wamrc --use-prof-file=<profile_file> -o <aot_file> <wasm_file>`
to generate the optimized aot file.
5. Run the optimized aot_file: `iwasm <aot_file>`.
The test scripts are also added for each benchmark, run `test_pgo.sh` under
each benchmark's folder to test the AOT static pgo.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
Add macro WASM_ENABLE_WORD_ALING_READ to enable reading
1/2/4 and n bytes data from vram buffer, which requires 4-byte addr
alignment reading.
Eliminate XIP AOT relocations related to the below ones:
i32_div_u, f32_min, f32_max, f32_ceil, f32_floor, f32_trunc, f32_rint
Refactor the layout of interpreter and AOT module instance:
- Unify the interp/AOT module instance, use the same WASMModuleInstance/
WASMMemoryInstance/WASMTableInstance data structures for both interpreter
and AOT
- Make the offset of most fields the same in module instance for both interpreter
and AOT, append memory instance structure, global data and table instances to
the end of module instance for interpreter mode (like AOT mode)
- For extra fields in WASM module instance, use WASMModuleInstanceExtra to
create a field `e` for interpreter
- Change the LLVM JIT module instance creating process, LLVM JIT uses the WASM
module and module instance same as interpreter/Fast-JIT mode. So that Fast JIT
and LLVM JIT can access the same data structures, and make it possible to
implement the Multi-tier JIT (tier-up from Fast JIT to LLVM JIT) in the future
- Unify some APIs: merge some APIs for module instance and memory instance's
related operations (only implement one copy)
Note that the AOT ABI is same, the AOT file format, AOT relocation types, how AOT
code accesses the AOT module instance and so on are kept unchanged.
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1384
Thread data should not be destroyed when thread exits, or other thread
may not be able to join it. This PR saves the thread data into thread data
list when thread exits, sets thread status and stores the return value, so
that other thread can join it.
Also set MEM_TOP_DOWN flag for Windows VirtualAlloc to yield LLVM
JIT relocation error.
And set opt/size level to 3 for LLVM JIT for future use, currently the flags
are not used by LLVM JIT.
Lookup table for i32.const and i64.const for xtensa XIP
Lookup const offset from table for load/store opcodes for xtensa XIP
Fill capability flags for xtensa XIP
Enable lower switch pass for xtensa XIP
Fix the following warning when loading an aot file without relocations:
```
[20:19:00:528 - 1119F1600]: warning: wasm_runtime_malloc with size zero
```
Fix issues in PR "Refine interp/aot string storage and emitting (#820)",
which had a few issues:
- It looks a wrong byte to mark the flag
- It doesn't work for long strings (>= 0x80 in case of little endian)
This commit fixes them by maintaining a list of loaded symbols while loading
relocation section to avoid reading a string repeatedly, and no need to mark
the flag again.
Add aot relocation for ".rodata.str" symbol to support more cases
Fix some coding style issues
Fix aot block/value stack destroy issue
Refine classic/fast interpreter codes
Clear compile warning of libc_builtin_wrapper.c in 32-bit platform
Refactor LLVM Orc JIT to actually enable the lazy compilation and speedup
the launching process:
https://llvm.org/docs/ORCv2.html#laziness
Main modifications:
- Create LLVM module for each wasm function, wrap it with thread safe module
so that the modules can be compiled parallelly
- Lookup function from aot module instance's func_ptrs but not directly call the
function to decouple the module relationship
- Compile the function when it is first called and hasn't been compiled
- Create threads to pre-compile the WASM functions parallelly when loading
- Set Lazy JIT as default, update document and build/test scripts
Currently when calling wasm_runtime_call_wasm() to invoke wasm function
with externref type argument from runtime embedder, developer needs to
use wasm_externref_obj2ref() to convert externref obj into an internal ref
index firstly, which is not convenient to developer.
To align with GC feature in which all the references passed to
wasm_runtime_call_wasm() can be object pointers directly, we change the
interface of wasm_runtime_call_wasm() to allow to pass object pointer
directly for the externref argument, and refactor the related codes, update
the related samples and the document.
Refine is_xip_file check, when e_type isn't E_TYPE_XIP, just return false
and no need to go through all the other sections of the AOT file.
Refine pointer range check, convert pointer to uintptr_t type before
comparison to yield possible sanitizer pointer overflow error.
Enable running XIP file on Windows platform.
And add more strict checks for wamrc to report error when the input file
is same with output file, or the input file is AOT file but not wasm file.
Refer to https://github.com/WebAssembly/WASI/blob/main/design/application-abi.md
to check the WASI ABI compatibility:
- Command (main module) may export _start function with signature "()"
- Reactor (sub module) may export _initialize function with signature "()"
- _start and _initialize can not be exported at the same time
- Reactor cannot export _start function
- Command and Reactor must export memory
And
- Rename module->is_wasi_module to module->import_wasi_api
- Refactor wasm_loader_find_export()
- Remove MULTI_MODULE related codes from mini_loader
- Update multi-module samples
- Fix a "use-after-free" issue. Since we reuse the memory instance of sub module,
just to protect it from freeing an imported memory instance
Lookup float/double constants from exec_env->native_symbol table
but not construct them with LLVMBuildConst if XIP mode is enabled,
these constants are introduced by f32/f64.const opcodes and some
float/double conversion opcodes, and make wamrc generate some
relocations in text section of AOT XIP file. This patch eliminates such
relocations when "--enable-indirect-mode" is added to wamrc.
Use the previous resolved binary type info (obj_data->target_info.bin_type) to
check the endian and bit-width but not the raw binary info, the latter is not
suitable for the check for Win32 object file type.
And fix the symbol comparison issue in resolve_target_sym(), as in Win32, the
symbol name of a function added by LLVMAddFunction() is prefixed by '_',
which leads to invalid result returned by strcmp().