- Inherit shared memory from the parent instance, instead of
trying to look it up by the underlying module. The old method
works correctly only when every cluster uses different module.
- Use reference count in WASMMemoryInstance/AOTMemoryInstance
to mark whether the memory is shared or not
- Retire WASMSharedMemNode
- For atomic opcode implementations in the interpreters, use
a global lock for now
- Update the internal API users
(wasi-threads, lib-pthread, wasm_runtime_spawn_thread)
Fixes https://github.com/bytecodealliance/wasm-micro-runtime/issues/1962
- Avoid destroying module instance repeatedly in pthread_exit_wrapper and
wasm_thread_cluster_exit.
- Wait enough time in pthread_join_wrapper for target thread to exit and
destroy its resources.
We need to make a test that runs longer than the tests we had before to check
some problems that might happen after running for some time (e.g. memory
corruption or something else).
Tests were failing because the right permissions were not provided to iwasm.
Also, test failures didn't trigger build failure due to typo - also fixed in this change.
In addition to that, this PR fixes a few issues with the test itself:
* the `server_init_complete` was not reset early enough causing the client to occasionally
assume the server started even though it didn't yet
* set `SO_REUSEADDR` on the server socket so the port can be reused shortly after
closing the previous socket
* defined receive-send-receive sequence from server to make sure server is alive at the
time of sending message
The old method may not work for some cases. This PR iterates over all instructions
in the function, looking for memcpy, memmove and memset instructions, putting
them into a set, and finally expands them into a loop one by one.
And move this LLVM Pass after building the pipe line of pass builder to ensure that
the memcpy/memmove/memset instrinsics are generated before applying the pass.
We have observed a significant performance degradation after merging
https://github.com/bytecodealliance/wasm-micro-runtime/pull/1991
Instead of protecting suspend flags with a mutex, we implement the flags
as atomic variable and only use mutex when atomics are not available
on a given platform.
esp32-s3's instruction memory and data memory can be accessed through mutual mirroring way,
so we define a new feature named as WASM_MEM_DUAL_BUS_MIRROR.
Allow to use `cmake -DWAMR_CONFIGURABLE_BOUNDS_CHECKS=1` to
build iwasm, and then run `iwasm --disable-bounds-checks` to disable the
memory access boundary checks.
And add two APIs:
`wasm_runtime_set_bounds_checks` and `wasm_runtime_is_bounds_checks_enabled`
Calling `__wasi_sock_addr_resolve` syscall causes native stack overflow.
Given this is a standard function available in WAMR, we should have at least
the default stack size large enough to handle this case.
The socket tests were updated so they also run in separate thread, but
the simple retro program is:
```C
void *th(void *p)
{
struct addrinfo *res;
getaddrinfo("amazon.com", NULL, NULL, &res);
return NULL;
}
int main(int argc, char **argv)
{
pthread_t pt;
pthread_create(&pt, NULL, th, NULL);
pthread_join(pt, NULL);
return 0;
}
```
## Context
Currently, WAMR supports compiling iwasm with flag `WAMR_BUILD_WASI_NN`.
However, there are scenarios where the user might prefer having it as a shared library.
## Proposed Changes
Decouple wasi-nn context management by internally managing the context given
a module instance reference.
Fix some build errors when building wamrc with LLVM-13, reported in #2311
Fix some build warnings when building wamrc with LLVM-16:
```
core/iwasm/compilation/aot_llvm_extra2.cpp:26:26: warning:
‘llvm::None’ is deprecated: Use std::nullopt instead. [-Wdeprecated-declarations]
26 | return llvm::None;
```
Fix a maybe-uninitialized compile warning:
```
core/iwasm/compilation/aot_llvm.c:413:9: warning:
‘update_top_block’ may be used uninitialized in this function [-Wmaybe-uninitialized]
413 | LLVMPositionBuilderAtEnd(b, update_top_block);
```
## Context
Path to models use `/assets` for testing inside docker. While testing directly from
the repo we are forced to use soft-links or modify the paths.
## Proposed Changes
Use relative path and adjust docker volumes in docs.
Major changes:
- Public headers inside `wasi-nn/include`
- Put cmake files in `cmake` folder
- Make linux iwasm link with `${WASI_NN_LIBS}` so iwasm can enable wasi-nn
This PR attempts to search for the system libuv and use it if found instead of
downloading it. As reported in #1831, this is needed because some tools
build in a sandbox and clear the extra sources.
Move the native stack overflow check from the caller to the callee because the
former doesn't work for call_indirect and imported functions.
Make the stack usage estimation more accurate. Instead of making a guess from
the number of wasm locals in the function, use the LLVM's idea of the stack size
of each MachineFunction. The former is inaccurate because a) it doesn't reflect
optimization passes, and b) wasm locals are not the only reason to use stack.
To use the post-compilation stack usage information without requiring 2-pass
compilation or machine-code imm rewriting, introduce a global array to store
stack consumption of each functions:
For JIT, use a custom IRCompiler with an extra pass to fill the array.
For AOT, use `clang -fstack-usage` equivalent because we support external llc.
Re-implement function call stack usage estimation to reflect the real calling
conventions better. (aot_estimate_stack_usage_for_function_call)
Re-implement stack estimation logic (--enable-memory-profiling) based on the new
machinery.
Discussions: #2105.
LLVM PGO (Profile-Guided Optimization) allows the compiler to better optimize code
for how it actually runs. This PR implements the AOT static PGO, and is tested on
Linux x86-64 and x86-32. The basic steps are:
1. Use `wamrc --enable-llvm-pgo -o <aot_file_of_pgo> <wasm_file>`
to generate an instrumented aot file.
2. Compile iwasm with `cmake -DWAMR_BUILD_STATIC_PGO=1` and run
`iwasm --gen-prof-file=<raw_profile_file> <aot_file_of_pgo>`
to generate the raw profile file.
3. Run `llvm-profdata merge -output=<profile_file> <raw_profile_file>`
to merge the raw profile file into the profile file.
4. Run `wamrc --use-prof-file=<profile_file> -o <aot_file> <wasm_file>`
to generate the optimized aot file.
5. Run the optimized aot_file: `iwasm <aot_file>`.
The test scripts are also added for each benchmark, run `test_pgo.sh` under
each benchmark's folder to test the AOT static pgo.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
Add nightly (UTC time) checks with asan and ubsan, and also put gcc-4.8 build
to nightly run since we don't need to run it with every PR.
Co-authored-by: Maksim Litskevich <makslit@amazon.co.uk>