- Update spec test cases to commit bc76fd79cfe61033d7f4ad4a7e8fc4f996dc5ba8 on Apr. 3
- Update wabt binary to 1.0.34 to support newer spec cases
- Add comparison between table declared elem type and table elem segment value type
- Add a function to decide whether to execute test cases in a running mode
- Keep using interpreter in GC spec because wat2wasm in wabt can't compile if.wast w/o errors
- Re-factoring threads spec test case processing
- Since wabt 1.0.34 release isn't compatible with ubuntu 20.04, compile it from source code
- Disable CI to run aot multi-module temporarily, and will enable it in another PR
Add flag `LoadArgs.clone_wasm_binary` to control whether to clone the wasm/aot
binary in wasm-c-api module. If false, API `wasm_module_new_ex` won't clone the
binary, which may reduce the footprint.
Add flag `LoadArgs.wasm_binary_freeable` to control whether the wasm/aot binary
may be freed after instantiation for wamr API `wasm_runtime_load_ex`, if yes, then
for some running modes, the wasm/aot module doesn't refer to the input binary
again so developer can free it after instantiation to reduce the footprint.
And add API `wasm_module_is_underlying_binary_freeable` and
`wasm_runtime_is_underlying_binary_freeable` to check whether the input binary
can be freed after instantiation for wasm-c-api and wamr api.
And add sample to illustrate it.
Support getting global type from `wasm_runtime_get_import_type` and
`wasm_runtime_get_export_type`, and add two APIs:
```C
wasm_valkind_t
wasm_global_type_get_valkind(const wasm_global_type_t global_type);
bool
wasm_global_type_get_mutable(const wasm_global_type_t global_type);
```
If there is no else branch, make a virtual else opcode for easier integrity
check and to copy the correct results to the block return address for
fast-interp mode: change if block from `if ... end` to `if ... else end`.
Reported in issue #3386, #3387, #3388.
Fix the integer overflow issue when checking target branch depth in opcode
br_table, and fix is_32bit_type not check VALUE_TYPE_ANY issue, which may
cause wasm_loader_push_frame_offset push extra unneeded offset.
Fix wasm loader integrity checks for opcode ref.func and opcode else:
for opcode ref.func, the function must be an import, exported, or present in a
table elem segment or global initializer to be used as the operand to ref.func,
for opcode else, there must not be an else opcode previously.
Reported in #3336 and #3337.
And fix mini loader PUSH_MEM_OFFSET/POP_MEM_OFFSET macro
definitions due to the introducing of memory64 feature.
Enhance the GC subtyping checks:
- Fix issues in the type equivalence check
- Enable the recursive type subtyping check
- Add a equivalence type flag in defined types of aot file, if there is an
equivalence type before, just set it true and re-use the previous type
- Normalize the defined types for interpreter and AOT
- Enable spec test case type-equivalence.wast and type-subtyping.wast,
and enable some commented cases
- Enable set WAMR_BUILD_SANITIZER from cmake variable
- Add new API wasm_runtime_load_ex() in wasm_export.h
and wasm_module_new_ex in wasm_c_api.h
- Put aot_create_perf_map() into a separated file aot_perf_map.c
- In perf.map, function names include user specified module name
- Enhance the script to help flamegraph generations
Fix the warnings and issues reported:
- in Windows platform
- by CodeQL static code analyzing
- by Coverity static code analyzing
And update CodeQL script to build exception handling and memory features.
Adding a new cmake flag (cache variable) `WAMR_BUILD_MEMORY64` to enable
the memory64 feature, it can only be enabled on the 64-bit platform/target and
can only use software boundary check. And when it is enabled, it can support both
i32 and i64 linear memory types. The main modifications are:
- wasm loader & mini-loader: loading and bytecode validating process
- wasm runtime: memory instantiating process
- classic-interpreter: wasm code executing process
- Support memory64 memory in related runtime APIs
- Modify main function type check when it's memory64 wasm file
- Modify `wasm_runtime_invoke_native` and `wasm_runtime_invoke_native_raw` to
handle registered native function pointer argument when memory64 is enabled
- memory64 classic-interpreter spec test in `test_wamr.sh` and in CI
Currently, it supports memory64 memory wasm file that uses core spec
(including bulk memory proposal) opcodes and threads opcodes.
ps.
https://github.com/bytecodealliance/wasm-micro-runtime/issues/3091https://github.com/bytecodealliance/wasm-micro-runtime/pull/3240https://github.com/bytecodealliance/wasm-micro-runtime/pull/3260
The PR #3259 reverted PR #3192, it fixes#3210 but makes #3170 failed again.
The workaround is that we should update `ctx->dynamic_offset` only for opcode br
and should not update it for opcode br_if. This PR fixes both issue #3170 and #3210.
Should not update `ctx->dynamic_offset` in emit_br_info, since the `Part e` only
sets the dst offsets, the operand stack should not be changed, e.g., the stack
operands are to be used by the opcodes followed by `br_if` opcode.
Reported in https://github.com/bytecodealliance/wasm-micro-runtime/issues/3210.
Fix the errors reported in the sanitizer test of nightly run CI.
When the stack is in polymorphic state, the stack operands may be changed
after pop and push operations (e.g. stack is empty but pop op can succeed
in polymorphic, and the push op can push a new operand to stack), this may
impact the following checks to other target blocks of the br_table opcode.
Implement the GC (Garbage Collection) feature for interpreter mode,
AOT mode and LLVM-JIT mode, and support most features of the latest
spec proposal, and also enable the stringref feature.
Use `cmake -DWAMR_BUILD_GC=1/0` to enable/disable the feature,
and `wamrc --enable-gc` to generate the AOT file with GC supported.
And update the AOT file version from 2 to 3 since there are many AOT
ABI breaks, including the changes of AOT file format, the changes of
AOT module/memory instance layouts, the AOT runtime APIs for the
AOT code to invoke and so on.
This PR adds the initial support for WASM exception handling:
* Inside the classic interpreter only:
* Initial handling of Tags
* Initial handling of Exceptions based on W3C Exception Proposal
* Import and Export of Exceptions and Tags
* Add `cmake -DWAMR_BUILD_EXCE_HANDLING=1/0` option to enable/disable
the feature, and by default it is disabled
* Update the wamr-test-suites scripts to test the feature
* Additional CI/CD changes to validate the exception spec proposal cases
Refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1884587513f3c68bebfe9ad759bccdfed8
Signed-off-by: Ricardo Aguilar <ricardoaguilar@siemens.com>
Co-authored-by: Chris Woods <chris.woods@siemens.com>
Co-authored-by: Rene Ermler <rene.ermler@siemens.com>
Co-authored-by: Trenner Thomas <trenner.thomas@siemens.com>
The content in custom name section is changed after loaded since the strings
are adjusted with '\0' appended, the emitted AOT file then cannot be loaded.
The PR disables changing the content for AOT compiler to resolve it.
And disable emitting custom name section for `wamrc --enable-dump-call-stack`,
instead, use `wamrc --emit-custom-sections=name` to emit it.
Allow to invoke the quick call entry wasm_runtime_quick_invoke_c_api_import to
call the wasm-c-api import functions to speedup the calling process, which reduces
the data copying.
Use `wamrc --invoke-c-api-import` to generate the optimized AOT code, and set
`jit_options->quick_invoke_c_api_import` true in wasm_engine_new when LLVM JIT
is enabled.
In some scenarios there may be lots of callings to AOT/JIT functions from the
host embedder, which expects good performance for the calling process, while
in the current implementation, runtime calls the wasm_runtime_invoke_native
to prepare the array of registers and stacks for the invokeNative assemble code,
and the latter then puts the elements in the array to physical registers and
native stacks and calls the AOT/JIT function, there may be many data copying
and handlings which impact the performance.
This PR registers some quick AOT/JIT entries for some simple wasm signatures,
and let runtime call the entry to directly invoke the AOT/JIT function instead of
calling wasm_runtime_invoke_native, which speedups the calling process.
We may extend the mechanism next to allow the developer to register his quick
AOT/JIT entries to speedup the calling process of invoking the AOT/JIT functions
for some specific signatures.