wasm-micro-runtime/core/iwasm/libraries/wasi-nn/README.md
ayakoakasaka 89be5622a5
wasi-nn: Add external delegation to support several NPU/GPU (#2162)
Add VX delegation as an external delegation of TFLite, so that several NPU/GPU
(from VeriSilicon, NXP, Amlogic) can be controlled via WASI-NN.

Test Code can work with the X86 simulator.
2023-05-05 16:29:36 +08:00

1.8 KiB

WASI-NN

How to use

Enable WASI-NN in the WAMR by spefiying it in the cmake building configuration as follows,

set (WAMR_BUILD_WASI_NN  1)

The definition of the functions provided by WASI-NN is in the header file core/iwasm/libraries/wasi-nn/wasi_nn.h.

By only including this file in your WASM application you will bind WASI-NN into your module.

Tests

To run the tests we assume that the current directory is the root of the repository.

Build the runtime

Build the runtime image for your execution target type.

EXECUTION_TYPE can be:

  • cpu
  • nvidia-gpu
  • vx-delegate
EXECUTION_TYPE=cpu
docker build -t wasi-nn-${EXECUTION_TYPE} -f core/iwasm/libraries/wasi-nn/test/Dockerfile.${EXECUTION_TYPE} .

Build wasm app

docker build -t wasi-nn-compile -f core/iwasm/libraries/wasi-nn/test/Dockerfile.compile .
docker run -v $PWD/core/iwasm/libraries/wasi-nn:/wasi-nn wasi-nn-compile

Run wasm app

If all the tests have run properly you will the the following message in the terminal,

Tests: passed!
  • CPU
docker run \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-cpu \
    --dir=/assets \
    --env="TARGET=cpu" \
    /assets/test_tensorflow.wasm
  • (NVIDIA) GPU
docker run \
    --runtime=nvidia \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-nvidia-gpu \
    --dir=/assets \
    --env="TARGET=gpu" \
    /assets/test_tensorflow.wasm
  • vx-delegate for NPU (x86 simulater)
docker run \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-vx-delegate \
    --dir=/assets \
    --env="TARGET=gpu" \
    /assets/test_tensorflow.wasm

Requirements:

What is missing

Supported:

  • Graph encoding: tensorflowlite.
  • Execution target: cpu and gpu.
  • Tensor type: fp32.