wasm-micro-runtime/doc/multi_module.md
TianlongLiang c3e33a96ea
Remove unused argument in wasm_runtime_lookup_function and refactor WASMModuleInstance (#3218)
Remove the unused parameter `signature` from `wasm_runtime_lookup_function`.

Refactor the layout of WASMModuleInstance structure:
- move common data members `c_api_func_imports` and `cur_exec_env` from
  `WASMModuleInstanceExtraCommon` to `WASMModuleInstance`
- In `WASMModuleInstance`, enlarge `reserved[3]` to `reserved[5]` in case that
  we need to add more fields in the future

ps.
https://github.com/bytecodealliance/wasm-micro-runtime/issues/2530
https://github.com/bytecodealliance/wasm-micro-runtime/issues/3202
2024-03-13 12:28:45 +08:00

161 lines
5.2 KiB
Markdown

# Multiple Modules as Dependencies
A WASM module can _import_ _functions_, _globals_, _memories_ and _tables_ from other modules as dependencies. A module can also _export_ those entities for other modules like a library.
WAMR loads all dependencies recursively according to the _import section_ of a module.
> WAMR only implements the load-time dynamic linking. Please refer to [dynamic linking](https://webassembly.org/docs/dynamic-linking/) for more details.
WAMR follows [WASI Command/Reactor Model](https://github.com/WebAssembly/WASI/blob/main/legacy/application-abi.md#current-unstable-abi). The WASI model separates modules into commands and reactors. A Command is the main module that requires exports of reactors(submodules).
if `WASM_ENABLE_LIBC_WASI` is enabled, any module imports a WASI APIs, like `(import "wasi_snapshot_preview1" "XXX")`, should follow restrictions of the _WASI application ABI_:
- a main module(a command) should include `_start()`
- a submodule(a reactor) should include `_initialize()`
- both a command and a reactor should include an exported `memory`
## Multi-Module Related APIs
### Register a module
```c
bool
wasm_runtime_register_module(const char *module_name,
wasm_module_t module,
char *error_buf,
uint32_t error_buf_size);
```
It is used to register a _module_ with a _module_name_ to WASM runtime, especially for the main module, which is loaded by `wasm_runtime_load()` and doesn't have a chance to tell runtime its _module name_.
WAMR will get submodules' names(according to the _import section_ of the main module) and load .wasm files from the filesystem or stream and then register them internally.
### Find a registered module
```c
wasm_module_t
wasm_runtime_find_module_registered(
const char *module_name);
```
It is used to check whether a module with a given _module_name_ has been registered before or not. Return the module if yes.
### Module reader and destroyer
```c
typedef bool (*module_reader)(const char *module_name,
uint8_t **p_buffer,
uint32_t *p_size);
typedef void (*module_destroyer)(uint8_t *buffer,
uint32_t size);
void
wasm_runtime_set_module_reader(const module_reader reader,
const module_destroyer destroyer);
```
WAMR hopes that the native host or embedding environment loads/unloads the module WASM files by themselves and only passes runtime the binary content without worrying about filesystem or storage issues. `module_reader` and `module_destroyer` are two callbacks called when dynamic-loading/unloading submodules. Developers must implement the two callbacks by themselves.
### Call function of a submodule
```c
wasm_function_inst_t
wasm_runtime_lookup_function(wasm_module_inst_t const module_inst,
const char *name);
```
Multi-module allows one to look up an exported function of a submodule. There are two ways to indicate the function _name_:
- parent function name only by default, used to look up the function of the parent module
- submodule name, function name and two $ symbols, e.g. `$submodule_name$function_name`, used to lookup function of submodule
- `signature` can be NULL
## Example
### Attributes in C/C++
Suppose there are three C files, _mA.c_, _mB.c_ and _mC.c_. Each of them exports functions and imports from others except mA.
import/export with two kinds of `__attribute__`:
- `__attribute__((import_module("MODULE_NAME"))) __attribute__((import_name("FUNCTION_NAME")))`. to indicate dependencies of the current module.
- `__attribute__((export_name("FUNCTION_NAME")))`. to expose functions.
```C
// mA.c
__attribute__((export_name("A1"))) int
A1()
{
return 11;
}
```
```C
// mB.c
__attribute__((import_module("mA")))
__attribute__((import_name("A1"))) extern int
A1();
__attribute__((export_name("B1"))) int
B1()
{
return 21;
}
```
### Compile Options
to generate a wasm module as a command
```
$ /path/to/wasi-sdk/bin/clang -o command.wasm main_module.c
```
to generate a wasm module as a reactor
```
$ /path/to/wasi-sdk/bin/clang -mexec-model=reactor -o reactor.wasm submodule.c
```
In the above case, _mA_ and _mB_ are reactors(submodules), _mC_ is the command(main module). Their _import relationships_ will be like:
![import relationships](./pics/multi_module_pic1.png)
### libvmlib
We need to enable _WAMR_BUILD_MULTI_MODULE_ option when building WAMR vmlib. Please ref to [Build WAMR core](./build_wamr.md) for a thoughtful guide.
### code
After all the preparation, we can call some functions from native code with APIs
First, create two callbacks to load WASM module files into memory and unload them later
```c
static bool
module_reader_cb(const char *module_name, uint8 **p_buffer, uint32 *p_size)
{
// ...
*p_buffer = (uint8_t *)bh_read_file_to_buffer(wasm_file_path, p_size);
// ...
}
static void
module_destroyer_cb(uint8 *buffer, uint32 size)
{
BH_FREE(buffer);
}
```
Second, create a large buffer and tell WAMR malloc any resource only from this buffer later.
More details
```c
static char sandbox_memory_space[10 * 1024 * 1024] = { 0 };
```
Third, put all together. Please refer to [main.c](../samples/multi-module/src/main.c)