wasm-micro-runtime/core/iwasm/interpreter/wasm_interp_fast.c
Marcin Kolny efa8019bdb
Merge dev/simd for fast-interp (#4131)
* Implement the first few SIMD opcodes for fast interpreter (v128.const, v128.any_true) (#3818)

Tested on the following code:
```
(module
  (import "wasi_snapshot_preview1" "proc_exit" (func $proc_exit (param i32)))
  (memory (export "memory") 1)

  ;; WASI entry point
  (func $main (export "_start")
    v128.const i8x16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    v128.any_true
    if
      unreachable
    end
    
    v128.const i8x16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15     
    v128.any_true
    i32.const 0
    i32.eq
    if
      unreachable
    end

    i32.const 0
    call $proc_exit
  )
)
```

* implement POP_V128()

This is to simplify the simd implementation for fast interpreter

* Add all SIMD operations into wasm_interp_fast switch

* Add V128 comparison operations

Tested using
```
(module
  (import "wasi_snapshot_preview1" "proc_exit" (func $proc_exit (param i32)))

  (memory (export "memory") 1)

  (func $assert_true (param v128)
    local.get 0
    v128.any_true
    i32.eqz
    if
      unreachable
    end
  )

  (func $main (export "_start")
    ;; Test v128.not
    v128.const i8x16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    v128.not
    v128.const i8x16 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
    i8x16.eq
    call $assert_true

    ;; Test v128.and
    v128.const i8x16 255 255 255 255 0 0 0 0 255 255 255 255 0 0 0 0
    v128.const i8x16 255 255 0 0 255 255 0 0 255 255 0 0 255 255 0 0
    v128.and
    v128.const i8x16 255 255 0 0 0 0 0 0 255 255 0 0 0 0 0 0
    i8x16.eq
    call $assert_true

    ;; Test v128.andnot
    v128.const i8x16 255 255 255 255 0 0 0 0 255 255 255 255 0 0 0 0
    v128.const i8x16 255 255 0 0 255 255 0 0 255 255 0 0 255 255 0 0
    v128.andnot
    v128.const i8x16 0 0 255 255 0 0 0 0 0 0 255 255 0 0 0 0
    i8x16.eq
    call $assert_true

    ;; Test v128.or
    v128.const i8x16 255 255 0 0 0 0 255 255 255 255 0 0 0 0 255 0
    v128.const i8x16 0 0 255 255 255 255 0 0 0 0 255 255 255 255 0 0
    v128.or
    v128.const i8x16 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 0
    i8x16.eq
    call $assert_true

    ;; Test v128.xor
    v128.const i8x16 255 255 0 0 255 255 0 0 255 255 0 0 255 255 0 0
    v128.const i8x16 255 255 255 255 0 0 0 0 255 255 255 255 0 0 0 0
    v128.xor
    v128.const i8x16 0 0 255 255 255 255 0 0 0 0 255 255 255 255 0 0
    i8x16.eq
    call $assert_true

    i32.const 0
    call $proc_exit
  )
)
```

* Add first NEON SIMD opcode implementations to fast interpreter (#3859)

Add some implementations of SIMD opcodes using NEON instructions.
Tested using:
```wast
(module
  (import "wasi_snapshot_preview1" "proc_exit" (func $proc_exit (param i32)))
  (memory (export "memory") 1)

  (func $assert_true (param v128)
    local.get 0
    v128.any_true 
    i32.eqz
    if
      unreachable
    end
  )
  (func $main (export "_start")
    i32.const 0
    i32.const 32
    memory.grow
    drop

    i32.const 0
    v128.const i8x16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    v128.store

    i32.const 0
    v128.load

    v128.const i8x16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    i8x16.eq
    call $assert_true

    i32.const 16
    v128.const i8x16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    v128.store

    i32.const 16
    v128.load
    v128.const i8x16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    i8x16.eq
    call $assert_true

    i32.const 0
    v128.load
    v128.const i8x16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    i8x16.eq
    call $assert_true
    drop

    i32.const 0
    i32.const 1
    memory.grow
    drop

    i32.const 0
    i64.const 0x7F80FF017E02FE80
    i64.store

    i32.const 0
    v128.load8x8_s

    v128.const i16x8 127 -128 -1 1 126 2 -2 -128

    i16x8.eq
    call $assert_true

    i32.const 0
    i64.const 0x80FE027E01FF807F
    i64.store

    i32.const 0
    v128.load8x8_u

    v128.const i16x8 128 254 2 126 1 255 128 127

    i16x8.eq
    call $assert_true

    i32.const 0
    i64.const 0x8000FFFE7FFF0001
    i64.store

    i32.const 0
    v128.load16x4_s

    v128.const i32x4 -32768 -2 32767 1

    i32x4.eq
    call $assert_true

    i32.const 0
    i64.const 0x8000FFFE7FFF0001 
    i64.store

    i32.const 0
    v128.load16x4_u

    v128.const i32x4 32768 65534 32767 1   

    i32x4.eq
    call $assert_true

    i32.const 0
    i64.const 0x8000000000000001
    i64.store

    i32.const 0
    v128.load32x2_s

    v128.const i64x2 -2147483648 1 

    i64x2.eq
    call $assert_true

    i32.const 0
    i64.const 0x8000000000000001
    i64.store

    i32.const 0
    v128.load32x2_u

    v128.const i64x2 2147483648 1

    i64x2.eq
    call $assert_true

    call $proc_exit
  )
)
```

* Emit imm for lane extract and replace (#3906)

* Fix replacement value not being correct (#3919)

* Implement load lanes opcodes for wasm (#3942)

* Implement final SIMD opcodes: store lane (#4001)

* Fix load/store (#4054)

* Correctly use unsigned functions  (#4055)

* implement local and function calls for v128 in the fast interpreter

* Fix splat opcodes, add V128 handling in preserve_referenced_local and reserve_block_ret

* Fix incorrect memory overflow values + SIMD ifdefs

* Fix load/load_splat macros

* correct endif wasm loader

* Update core/iwasm/interpreter/wasm_opcode.h

* Fix spec tests when WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS is 0

* Resolve merge conflicts arising from main -> dev/simd_for_interp and implement fast interpreter const offset loader support for V128

* Enable SIMDe tests on CI

* Document WAMR_BUILD_LIB_SIMDE

---------

Co-authored-by: James Marsh <mrshnja@amazon.co.uk>
Co-authored-by: jammar1 <108334558+jammar1@users.noreply.github.com>
Co-authored-by: Maks Litskevich <makslit@amazon.com>
Co-authored-by: Marcin Kolny <marcin.kolny@gmail.com>
Co-authored-by: Wenyong Huang <wenyong.huang@intel.com>
2025-03-20 14:23:20 +08:00

7947 lines
296 KiB
C

/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasm_interp.h"
#include "bh_log.h"
#include "wasm_runtime.h"
#include "wasm_opcode.h"
#include "wasm_loader.h"
#include "wasm_memory.h"
#include "../common/wasm_exec_env.h"
#if WASM_ENABLE_GC != 0
#include "../common/gc/gc_object.h"
#include "mem_alloc.h"
#if WASM_ENABLE_STRINGREF != 0
#include "string_object.h"
#endif
#endif
#if WASM_ENABLE_SHARED_MEMORY != 0
#include "../common/wasm_shared_memory.h"
#endif
#if WASM_ENABLE_SIMDE != 0
#include "simde/wasm/simd128.h"
#endif
typedef int32 CellType_I32;
typedef int64 CellType_I64;
typedef float32 CellType_F32;
typedef float64 CellType_F64;
#if WASM_ENABLE_THREAD_MGR == 0
#define get_linear_mem_size() linear_mem_size
#else
/**
* Load memory data size in each time boundary check in
* multi-threading mode since it may be changed by other
* threads in memory.grow
*/
#define get_linear_mem_size() GET_LINEAR_MEMORY_SIZE(memory)
#endif
#if WASM_ENABLE_SHARED_HEAP != 0
#define app_addr_in_shared_heap(app_addr, bytes) \
(shared_heap && (app_addr) >= shared_heap_start_off \
&& (app_addr) <= shared_heap_end_off - bytes + 1)
#define shared_heap_addr_app_to_native(app_addr, native_addr) \
native_addr = shared_heap_base_addr + ((app_addr)-shared_heap_start_off)
#define CHECK_SHARED_HEAP_OVERFLOW(app_addr, bytes, native_addr) \
if (app_addr_in_shared_heap(app_addr, bytes)) \
shared_heap_addr_app_to_native(app_addr, native_addr); \
else
#else
#define CHECK_SHARED_HEAP_OVERFLOW(app_addr, bytes, native_addr)
#endif
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0
#define CHECK_MEMORY_OVERFLOW(bytes) \
do { \
uint64 offset1 = (uint64)offset + (uint64)addr; \
CHECK_SHARED_HEAP_OVERFLOW(offset1, bytes, maddr) \
if (disable_bounds_checks || offset1 + bytes <= get_linear_mem_size()) \
/* If offset1 is in valid range, maddr must also \
be in valid range, no need to check it again. */ \
maddr = memory->memory_data + offset1; \
else \
goto out_of_bounds; \
} while (0)
#define CHECK_BULK_MEMORY_OVERFLOW(start, bytes, maddr) \
do { \
uint64 offset1 = (uint32)(start); \
CHECK_SHARED_HEAP_OVERFLOW(offset1, bytes, maddr) \
if (disable_bounds_checks || offset1 + bytes <= get_linear_mem_size()) \
/* App heap space is not valid space for \
bulk memory operation */ \
maddr = memory->memory_data + offset1; \
else \
goto out_of_bounds; \
} while (0)
#else
#define CHECK_MEMORY_OVERFLOW(bytes) \
do { \
uint64 offset1 = (uint64)offset + (uint64)addr; \
CHECK_SHARED_HEAP_OVERFLOW(offset1, bytes, maddr) \
maddr = memory->memory_data + offset1; \
} while (0)
#define CHECK_BULK_MEMORY_OVERFLOW(start, bytes, maddr) \
do { \
uint64 offset1 = (uint32)(start); \
CHECK_SHARED_HEAP_OVERFLOW(offset1, bytes, maddr) \
maddr = memory->memory_data + offset1; \
} while (0)
#endif /* !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 */
#define CHECK_ATOMIC_MEMORY_ACCESS(align) \
do { \
if (((uintptr_t)maddr & (align - 1)) != 0) \
goto unaligned_atomic; \
} while (0)
static inline uint32
rotl32(uint32 n, uint32 c)
{
const uint32 mask = (31);
c = c % 32;
c &= mask;
return (n << c) | (n >> ((0 - c) & mask));
}
static inline uint32
rotr32(uint32 n, uint32 c)
{
const uint32 mask = (31);
c = c % 32;
c &= mask;
return (n >> c) | (n << ((0 - c) & mask));
}
static inline uint64
rotl64(uint64 n, uint64 c)
{
const uint64 mask = (63);
c = c % 64;
c &= mask;
return (n << c) | (n >> ((0 - c) & mask));
}
static inline uint64
rotr64(uint64 n, uint64 c)
{
const uint64 mask = (63);
c = c % 64;
c &= mask;
return (n >> c) | (n << ((0 - c) & mask));
}
static inline float32
f32_min(float32 a, float32 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? a : b;
else
return a > b ? b : a;
}
static inline float32
f32_max(float32 a, float32 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? b : a;
else
return a > b ? a : b;
}
static inline float64
f64_min(float64 a, float64 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? a : b;
else
return a > b ? b : a;
}
static inline float64
f64_max(float64 a, float64 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? b : a;
else
return a > b ? a : b;
}
static inline uint32
clz32(uint32 type)
{
uint32 num = 0;
if (type == 0)
return 32;
while (!(type & 0x80000000)) {
num++;
type <<= 1;
}
return num;
}
static inline uint32
clz64(uint64 type)
{
uint32 num = 0;
if (type == 0)
return 64;
while (!(type & 0x8000000000000000LL)) {
num++;
type <<= 1;
}
return num;
}
static inline uint32
ctz32(uint32 type)
{
uint32 num = 0;
if (type == 0)
return 32;
while (!(type & 1)) {
num++;
type >>= 1;
}
return num;
}
static inline uint32
ctz64(uint64 type)
{
uint32 num = 0;
if (type == 0)
return 64;
while (!(type & 1)) {
num++;
type >>= 1;
}
return num;
}
static inline uint32
popcount32(uint32 u)
{
uint32 ret = 0;
while (u) {
u = (u & (u - 1));
ret++;
}
return ret;
}
static inline uint32
popcount64(uint64 u)
{
uint32 ret = 0;
while (u) {
u = (u & (u - 1));
ret++;
}
return ret;
}
static float
local_copysignf(float x, float y)
{
union {
float f;
uint32 i;
} ux = { x }, uy = { y };
ux.i &= 0x7fffffff;
ux.i |= uy.i & 0x80000000;
return ux.f;
}
static double
local_copysign(double x, double y)
{
union {
double f;
uint64 i;
} ux = { x }, uy = { y };
ux.i &= UINT64_MAX / 2;
ux.i |= uy.i & 1ULL << 63;
return ux.f;
}
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
#define LOAD_U32_WITH_2U16S(addr) (*(uint32 *)(addr))
#define LOAD_PTR(addr) (*(void **)(addr))
#else /* else of WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS */
static inline uint32
LOAD_U32_WITH_2U16S(void *addr)
{
union {
uint32 val;
uint16 u16[2];
} u;
bh_assert(((uintptr_t)addr & 1) == 0);
u.u16[0] = ((uint16 *)addr)[0];
u.u16[1] = ((uint16 *)addr)[1];
return u.val;
}
#if UINTPTR_MAX == UINT32_MAX
#define LOAD_PTR(addr) ((void *)LOAD_U32_WITH_2U16S(addr))
#elif UINTPTR_MAX == UINT64_MAX
static inline void *
LOAD_PTR(void *addr)
{
uintptr_t addr1 = (uintptr_t)addr;
union {
void *val;
uint32 u32[2];
uint16 u16[4];
} u;
bh_assert(((uintptr_t)addr & 1) == 0);
if ((addr1 & (uintptr_t)7) == 0)
return *(void **)addr;
if ((addr1 & (uintptr_t)3) == 0) {
u.u32[0] = ((uint32 *)addr)[0];
u.u32[1] = ((uint32 *)addr)[1];
}
else {
u.u16[0] = ((uint16 *)addr)[0];
u.u16[1] = ((uint16 *)addr)[1];
u.u16[2] = ((uint16 *)addr)[2];
u.u16[3] = ((uint16 *)addr)[3];
}
return u.val;
}
#endif /* end of UINTPTR_MAX */
#endif /* end of WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS */
#if WASM_ENABLE_GC != 0
static void
init_frame_refs(uint8 *frame_ref, uint32 cell_num, WASMFunctionInstance *func)
{
uint32 i, j;
memset(frame_ref, 0, cell_num);
for (i = 0, j = 0; i < func->param_count; i++) {
if (wasm_is_type_reftype(func->param_types[i])
&& !wasm_is_reftype_i31ref(func->param_types[i])) {
frame_ref[j++] = 1;
#if UINTPTR_MAX == UINT64_MAX
frame_ref[j++] = 1;
#endif
}
else {
j += wasm_value_type_cell_num(func->param_types[i]);
}
}
for (i = 0; i < func->local_count; i++) {
if (wasm_is_type_reftype(func->local_types[i])
&& !wasm_is_reftype_i31ref(func->local_types[i])) {
frame_ref[j++] = 1;
#if UINTPTR_MAX == UINT64_MAX
frame_ref[j++] = 1;
#endif
}
else {
j += wasm_value_type_cell_num(func->local_types[i]);
}
}
}
uint8 *
wasm_interp_get_frame_ref(WASMInterpFrame *frame)
{
return frame->frame_ref;
}
/* Return the corresponding ref slot of the given slot of local
variable or stack pointer. */
#define COMPUTE_FRAME_REF(ref, off) (ref + (unsigned)(off))
#define FRAME_REF(off) COMPUTE_FRAME_REF(frame_ref, off)
#if UINTPTR_MAX == UINT64_MAX
#define SET_FRAME_REF(off) *FRAME_REF(off) = *FRAME_REF(off + 1) = 1
#define CLEAR_FRAME_REF(off) \
(unsigned)off >= local_cell_num \
? (*FRAME_REF(off) = *FRAME_REF(off + 1) = 0) \
: (void)0
#else
#define SET_FRAME_REF(off) *FRAME_REF(off) = 1
#define CLEAR_FRAME_REF(off) \
(unsigned)off >= local_cell_num ? (*FRAME_REF(off) = 0) : (void)0
#endif
#define FRAME_REF_FOR(frame, p) \
COMPUTE_FRAME_REF(frame->frame_ref, p - frame->lp)
#define CLEAR_FRAME_REF_FOR(p, n) \
do { \
int32 ref_i, ref_n = (int32)(n); \
uint8 *ref = FRAME_REF(p - frame_lp); \
for (ref_i = 0; ref_i < ref_n; ref_i++) \
ref[ref_i] = 0; \
} while (0)
#endif /* end of WASM_ENABLE_GC != 0 */
#define read_uint32(p) \
(p += sizeof(uint32), LOAD_U32_WITH_2U16S(p - sizeof(uint32)))
#define GET_LOCAL_INDEX_TYPE_AND_OFFSET() \
do { \
uint32 param_count = cur_func->param_count; \
local_idx = read_uint32(frame_ip); \
bh_assert(local_idx < param_count + cur_func->local_count); \
local_offset = cur_func->local_offsets[local_idx]; \
if (local_idx < param_count) \
local_type = cur_func->param_types[local_idx]; \
else \
local_type = cur_func->local_types[local_idx - param_count]; \
} while (0)
#define GET_OFFSET() (frame_ip += 2, *(int16 *)(frame_ip - 2))
#define SET_OPERAND_I32(off, value) \
do { \
*(uint32 *)(frame_lp + *(int16 *)(frame_ip + off)) = value; \
} while (0)
#define SET_OPERAND_F32(off, value) \
do { \
*(float32 *)(frame_lp + *(int16 *)(frame_ip + off)) = value; \
} while (0)
#define SET_OPERAND_I64(off, value) \
do { \
uint32 *addr_tmp = frame_lp + *(int16 *)(frame_ip + off); \
PUT_I64_TO_ADDR(addr_tmp, value); \
} while (0)
#define SET_OPERAND_F64(off, value) \
do { \
uint32 *addr_tmp = frame_lp + *(int16 *)(frame_ip + off); \
PUT_F64_TO_ADDR(addr_tmp, value); \
} while (0)
#define SET_OPERAND_REF(off, value) \
do { \
uint32 *addr_tmp; \
opnd_off = *(int16 *)(frame_ip + off); \
addr_tmp = frame_lp + opnd_off; \
PUT_REF_TO_ADDR(addr_tmp, value); \
SET_FRAME_REF(ond_off); \
} while (0)
#define SET_OPERAND(op_type, off, value) SET_OPERAND_##op_type(off, value)
#define GET_OPERAND_I32(type, off) \
*(type *)(frame_lp + *(int16 *)(frame_ip + off))
#define GET_OPERAND_F32(type, off) \
*(type *)(frame_lp + *(int16 *)(frame_ip + off))
#define GET_OPERAND_I64(type, off) \
(type) GET_I64_FROM_ADDR(frame_lp + *(int16 *)(frame_ip + off))
#define GET_OPERAND_F64(type, off) \
(type) GET_F64_FROM_ADDR(frame_lp + *(int16 *)(frame_ip + off))
#define GET_OPERAND_V128(off) \
GET_V128_FROM_ADDR(frame_lp + *(int16 *)(frame_ip + off))
#define GET_OPERAND_REF(type, off) \
(type) GET_REF_FROM_ADDR(frame_lp + *(int16 *)(frame_ip + off))
#define GET_OPERAND(type, op_type, off) GET_OPERAND_##op_type(type, off)
#define PUSH_I32(value) \
do { \
*(int32 *)(frame_lp + GET_OFFSET()) = value; \
} while (0)
#define PUSH_F32(value) \
do { \
*(float32 *)(frame_lp + GET_OFFSET()) = value; \
} while (0)
#define PUSH_I64(value) \
do { \
uint32 *addr_tmp = frame_lp + GET_OFFSET(); \
PUT_I64_TO_ADDR(addr_tmp, value); \
} while (0)
#define PUSH_F64(value) \
do { \
uint32 *addr_tmp = frame_lp + GET_OFFSET(); \
PUT_F64_TO_ADDR(addr_tmp, value); \
} while (0)
#define PUSH_REF(value) \
do { \
uint32 *addr_tmp; \
opnd_off = GET_OFFSET(); \
addr_tmp = frame_lp + opnd_off; \
PUT_REF_TO_ADDR(addr_tmp, value); \
SET_FRAME_REF(opnd_off); \
} while (0)
#define PUSH_I31REF(value) \
do { \
uint32 *addr_tmp; \
opnd_off = GET_OFFSET(); \
addr_tmp = frame_lp + opnd_off; \
PUT_REF_TO_ADDR(addr_tmp, value); \
} while (0)
#define POP_I32() (*(int32 *)(frame_lp + GET_OFFSET()))
#define POP_F32() (*(float32 *)(frame_lp + GET_OFFSET()))
#define POP_I64() (GET_I64_FROM_ADDR(frame_lp + GET_OFFSET()))
#define POP_V128() (GET_V128_FROM_ADDR(frame_lp + GET_OFFSET()))
#define POP_F64() (GET_F64_FROM_ADDR(frame_lp + GET_OFFSET()))
#define POP_REF() \
(opnd_off = GET_OFFSET(), CLEAR_FRAME_REF((unsigned)(opnd_off)), \
GET_REF_FROM_ADDR(frame_lp + opnd_off))
#if WASM_ENABLE_GC != 0
#define SYNC_FRAME_REF() frame->frame_ref = frame_ref
#define UPDATE_FRAME_REF() frame_ref = frame->frame_ref
#else
#define SYNC_FRAME_REF() (void)0
#define UPDATE_FRAME_REF() (void)0
#endif
#define SYNC_ALL_TO_FRAME() \
do { \
frame->ip = frame_ip; \
SYNC_FRAME_REF(); \
} while (0)
#define UPDATE_ALL_FROM_FRAME() \
do { \
frame_ip = frame->ip; \
UPDATE_FRAME_REF(); \
} while (0)
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define UPDATE_FRAME_IP_END() (void)0
#else
#define UPDATE_FRAME_IP_END() frame_ip_end = wasm_get_func_code_end(cur_func)
#endif
#if WASM_ENABLE_GC != 0
#define RECOVER_FRAME_REF() frame_ref = frame->frame_ref
#else
#define RECOVER_FRAME_REF() (void)0
#endif
#define RECOVER_CONTEXT(new_frame) \
do { \
frame = (new_frame); \
cur_func = frame->function; \
prev_frame = frame->prev_frame; \
frame_ip = frame->ip; \
UPDATE_FRAME_IP_END(); \
frame_lp = frame->lp; \
RECOVER_FRAME_REF(); \
} while (0)
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
#define GET_OPCODE() opcode = *frame_ip++;
#else
#define GET_OPCODE() \
opcode = *frame_ip; \
frame_ip += 2;
#endif
#define DEF_OP_EQZ(ctype, src_op_type) \
do { \
SET_OPERAND(I32, 2, (GET_OPERAND(ctype, src_op_type, 0) == 0)); \
frame_ip += 4; \
} while (0)
#define DEF_OP_CMP(src_type, src_op_type, cond) \
do { \
SET_OPERAND(I32, 4, \
GET_OPERAND(src_type, src_op_type, 2) \
cond GET_OPERAND(src_type, src_op_type, 0)); \
frame_ip += 6; \
} while (0)
#define DEF_OP_BIT_COUNT(src_type, src_op_type, operation) \
do { \
SET_OPERAND( \
src_op_type, 2, \
(src_type)operation(GET_OPERAND(src_type, src_op_type, 0))); \
frame_ip += 4; \
} while (0)
#define DEF_OP_NUMERIC(src_type1, src_type2, src_op_type, operation) \
do { \
SET_OPERAND(src_op_type, 4, \
GET_OPERAND(src_type1, src_op_type, 2) \
operation GET_OPERAND(src_type2, src_op_type, 0)); \
frame_ip += 6; \
} while (0)
#define DEF_OP_REINTERPRET(src_type, src_op_type) \
do { \
SET_OPERAND(src_op_type, 2, GET_OPERAND(src_type, src_op_type, 0)); \
frame_ip += 4; \
} while (0)
#define DEF_OP_NUMERIC_64 DEF_OP_NUMERIC
#define DEF_OP_NUMERIC2(src_type1, src_type2, src_op_type, operation) \
do { \
SET_OPERAND(src_op_type, 4, \
GET_OPERAND(src_type1, src_op_type, 2) operation( \
GET_OPERAND(src_type2, src_op_type, 0) % 32)); \
frame_ip += 6; \
} while (0)
#define DEF_OP_NUMERIC2_64(src_type1, src_type2, src_op_type, operation) \
do { \
SET_OPERAND(src_op_type, 4, \
GET_OPERAND(src_type1, src_op_type, 2) operation( \
GET_OPERAND(src_type2, src_op_type, 0) % 64)); \
frame_ip += 6; \
} while (0)
#define DEF_ATOMIC_RMW_OPCODE(OP_NAME, op) \
case WASM_OP_ATOMIC_RMW_I32_##OP_NAME: \
case WASM_OP_ATOMIC_RMW_I32_##OP_NAME##8_U: \
case WASM_OP_ATOMIC_RMW_I32_##OP_NAME##16_U: \
{ \
uint32 readv, sval; \
\
sval = POP_I32(); \
addr = POP_I32(); \
\
if (opcode == WASM_OP_ATOMIC_RMW_I32_##OP_NAME##8_U) { \
CHECK_MEMORY_OVERFLOW(1); \
CHECK_ATOMIC_MEMORY_ACCESS(1); \
\
shared_memory_lock(memory); \
readv = (uint32)(*(uint8 *)maddr); \
*(uint8 *)maddr = (uint8)(readv op sval); \
shared_memory_unlock(memory); \
} \
else if (opcode == WASM_OP_ATOMIC_RMW_I32_##OP_NAME##16_U) { \
CHECK_MEMORY_OVERFLOW(2); \
CHECK_ATOMIC_MEMORY_ACCESS(2); \
\
shared_memory_lock(memory); \
readv = (uint32)LOAD_U16(maddr); \
STORE_U16(maddr, (uint16)(readv op sval)); \
shared_memory_unlock(memory); \
} \
else { \
CHECK_MEMORY_OVERFLOW(4); \
CHECK_ATOMIC_MEMORY_ACCESS(4); \
\
shared_memory_lock(memory); \
readv = LOAD_I32(maddr); \
STORE_U32(maddr, readv op sval); \
shared_memory_unlock(memory); \
} \
PUSH_I32(readv); \
break; \
} \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME: \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME##8_U: \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME##16_U: \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME##32_U: \
{ \
uint64 readv, sval; \
\
sval = (uint64)POP_I64(); \
addr = POP_I32(); \
\
if (opcode == WASM_OP_ATOMIC_RMW_I64_##OP_NAME##8_U) { \
CHECK_MEMORY_OVERFLOW(1); \
CHECK_ATOMIC_MEMORY_ACCESS(1); \
\
shared_memory_lock(memory); \
readv = (uint64)(*(uint8 *)maddr); \
*(uint8 *)maddr = (uint8)(readv op sval); \
shared_memory_unlock(memory); \
} \
else if (opcode == WASM_OP_ATOMIC_RMW_I64_##OP_NAME##16_U) { \
CHECK_MEMORY_OVERFLOW(2); \
CHECK_ATOMIC_MEMORY_ACCESS(2); \
\
shared_memory_lock(memory); \
readv = (uint64)LOAD_U16(maddr); \
STORE_U16(maddr, (uint16)(readv op sval)); \
shared_memory_unlock(memory); \
} \
else if (opcode == WASM_OP_ATOMIC_RMW_I64_##OP_NAME##32_U) { \
CHECK_MEMORY_OVERFLOW(4); \
CHECK_ATOMIC_MEMORY_ACCESS(4); \
\
shared_memory_lock(memory); \
readv = (uint64)LOAD_U32(maddr); \
STORE_U32(maddr, (uint32)(readv op sval)); \
shared_memory_unlock(memory); \
} \
else { \
uint64 op_result; \
CHECK_MEMORY_OVERFLOW(8); \
CHECK_ATOMIC_MEMORY_ACCESS(8); \
\
shared_memory_lock(memory); \
readv = (uint64)LOAD_I64(maddr); \
op_result = readv op sval; \
STORE_I64(maddr, op_result); \
shared_memory_unlock(memory); \
} \
PUSH_I64(readv); \
break; \
}
#define DEF_OP_MATH(src_type, src_op_type, method) \
do { \
SET_OPERAND(src_op_type, 2, \
(src_type)method(GET_OPERAND(src_type, src_op_type, 0))); \
frame_ip += 4; \
} while (0)
#define TRUNC_FUNCTION(func_name, src_type, dst_type, signed_type) \
static dst_type func_name(src_type src_value, src_type src_min, \
src_type src_max, dst_type dst_min, \
dst_type dst_max, bool is_sign) \
{ \
dst_type dst_value = 0; \
if (!isnan(src_value)) { \
if (src_value <= src_min) \
dst_value = dst_min; \
else if (src_value >= src_max) \
dst_value = dst_max; \
else { \
if (is_sign) \
dst_value = (dst_type)(signed_type)src_value; \
else \
dst_value = (dst_type)src_value; \
} \
} \
return dst_value; \
}
TRUNC_FUNCTION(trunc_f32_to_i32, float32, uint32, int32)
TRUNC_FUNCTION(trunc_f32_to_i64, float32, uint64, int64)
TRUNC_FUNCTION(trunc_f64_to_i32, float64, uint32, int32)
TRUNC_FUNCTION(trunc_f64_to_i64, float64, uint64, int64)
static bool
trunc_f32_to_int(WASMModuleInstance *module, uint8 *frame_ip, uint32 *frame_lp,
float32 src_min, float32 src_max, bool saturating, bool is_i32,
bool is_sign)
{
float32 src_value = GET_OPERAND(float32, F32, 0);
uint64 dst_value_i64;
uint32 dst_value_i32;
if (!saturating) {
if (isnan(src_value)) {
wasm_set_exception(module, "invalid conversion to integer");
return false;
}
else if (src_value <= src_min || src_value >= src_max) {
wasm_set_exception(module, "integer overflow");
return false;
}
}
if (is_i32) {
uint32 dst_min = is_sign ? INT32_MIN : 0;
uint32 dst_max = is_sign ? INT32_MAX : UINT32_MAX;
dst_value_i32 = trunc_f32_to_i32(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
SET_OPERAND(I32, 2, dst_value_i32);
}
else {
uint64 dst_min = is_sign ? INT64_MIN : 0;
uint64 dst_max = is_sign ? INT64_MAX : UINT64_MAX;
dst_value_i64 = trunc_f32_to_i64(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
SET_OPERAND(I64, 2, dst_value_i64);
}
return true;
}
static bool
trunc_f64_to_int(WASMModuleInstance *module, uint8 *frame_ip, uint32 *frame_lp,
float64 src_min, float64 src_max, bool saturating, bool is_i32,
bool is_sign)
{
float64 src_value = GET_OPERAND(float64, F64, 0);
uint64 dst_value_i64;
uint32 dst_value_i32;
if (!saturating) {
if (isnan(src_value)) {
wasm_set_exception(module, "invalid conversion to integer");
return false;
}
else if (src_value <= src_min || src_value >= src_max) {
wasm_set_exception(module, "integer overflow");
return false;
}
}
if (is_i32) {
uint32 dst_min = is_sign ? INT32_MIN : 0;
uint32 dst_max = is_sign ? INT32_MAX : UINT32_MAX;
dst_value_i32 = trunc_f64_to_i32(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
SET_OPERAND(I32, 2, dst_value_i32);
}
else {
uint64 dst_min = is_sign ? INT64_MIN : 0;
uint64 dst_max = is_sign ? INT64_MAX : UINT64_MAX;
dst_value_i64 = trunc_f64_to_i64(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
SET_OPERAND(I64, 2, dst_value_i64);
}
return true;
}
#define DEF_OP_TRUNC_F32(min, max, is_i32, is_sign) \
do { \
if (!trunc_f32_to_int(module, frame_ip, frame_lp, min, max, false, \
is_i32, is_sign)) \
goto got_exception; \
frame_ip += 4; \
} while (0)
#define DEF_OP_TRUNC_F64(min, max, is_i32, is_sign) \
do { \
if (!trunc_f64_to_int(module, frame_ip, frame_lp, min, max, false, \
is_i32, is_sign)) \
goto got_exception; \
frame_ip += 4; \
} while (0)
#define DEF_OP_TRUNC_SAT_F32(min, max, is_i32, is_sign) \
do { \
(void)trunc_f32_to_int(module, frame_ip, frame_lp, min, max, true, \
is_i32, is_sign); \
frame_ip += 4; \
} while (0)
#define DEF_OP_TRUNC_SAT_F64(min, max, is_i32, is_sign) \
do { \
(void)trunc_f64_to_int(module, frame_ip, frame_lp, min, max, true, \
is_i32, is_sign); \
frame_ip += 4; \
} while (0)
#define DEF_OP_CONVERT(dst_type, dst_op_type, src_type, src_op_type) \
do { \
dst_type value = (dst_type)(src_type)POP_##src_op_type(); \
PUSH_##dst_op_type(value); \
} while (0)
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
#define CELL_SIZE sizeof(uint8)
#else
#define CELL_SIZE (sizeof(uint8) * 2)
#endif
static bool
copy_stack_values(WASMModuleInstance *module, uint32 *frame_lp, uint32 arity,
#if WASM_ENABLE_GC != 0
uint8 *frame_ref,
#endif
uint32 total_cell_num, const uint8 *cells,
const int16 *src_offsets, const uint16 *dst_offsets)
{
/* To avoid the overlap issue between src offsets and dst offset,
* we use 2 steps to do the copy. First step, copy the src values
* to a tmp buf. Second step, copy the values from tmp buf to dst.
*/
bool ret = false;
uint32 buf[16] = { 0 }, i;
uint32 *tmp_buf = buf;
uint8 cell;
int16 src, buf_index = 0;
uint16 dst;
#if WASM_ENABLE_GC != 0
uint8 ref_buf[4];
uint8 *tmp_ref_buf = ref_buf;
#endif
/* Allocate memory if the buf is not large enough */
if (total_cell_num > sizeof(buf) / sizeof(uint32)) {
uint64 total_size = sizeof(uint32) * (uint64)total_cell_num;
if (total_size >= UINT32_MAX
|| !(tmp_buf = wasm_runtime_malloc((uint32)total_size))) {
wasm_set_exception(module, "allocate memory failed");
goto fail;
}
}
#if WASM_ENABLE_GC != 0
if (total_cell_num > sizeof(ref_buf) / sizeof(uint8)) {
uint64 total_size = sizeof(uint8) * (uint64)total_cell_num;
if (total_size >= UINT32_MAX
|| !(tmp_ref_buf = wasm_runtime_malloc((uint32)total_size))) {
wasm_set_exception(module, "allocate memory failed");
goto fail;
}
}
#endif
/* 1) Copy values from src to tmp buf */
for (i = 0; i < arity; i++) {
cell = cells[i * CELL_SIZE];
src = src_offsets[i];
if (cell == 1) {
tmp_buf[buf_index] = frame_lp[src];
#if WASM_ENABLE_GC != 0
tmp_ref_buf[buf_index] = frame_ref[src];
frame_ref[src] = 0;
#endif
}
else {
tmp_buf[buf_index] = frame_lp[src];
tmp_buf[buf_index + 1] = frame_lp[src + 1];
#if WASM_ENABLE_GC != 0
tmp_ref_buf[buf_index] = frame_ref[src];
tmp_ref_buf[buf_index + 1] = frame_ref[src + 1];
frame_ref[src] = 0;
frame_ref[src + 1] = 0;
#endif
}
buf_index += cell;
}
/* 2) Copy values from tmp buf to dest */
buf_index = 0;
for (i = 0; i < arity; i++) {
cell = cells[i * CELL_SIZE];
dst = dst_offsets[i];
if (cell == 1) {
frame_lp[dst] = tmp_buf[buf_index];
#if WASM_ENABLE_GC != 0
frame_ref[dst] = tmp_ref_buf[buf_index];
#endif
}
else {
frame_lp[dst] = tmp_buf[buf_index];
frame_lp[dst + 1] = tmp_buf[buf_index + 1];
#if WASM_ENABLE_GC != 0
frame_ref[dst] = tmp_ref_buf[buf_index];
frame_ref[dst + 1] = tmp_ref_buf[buf_index + 1];
#endif
}
buf_index += cell;
}
ret = true;
fail:
if (tmp_buf != buf) {
wasm_runtime_free(tmp_buf);
}
#if WASM_ENABLE_GC != 0
if (tmp_ref_buf != ref_buf) {
wasm_runtime_free(tmp_ref_buf);
}
#endif
return ret;
}
#if WASM_ENABLE_GC != 0
#define RECOVER_BR_INFO() \
do { \
uint32 arity; \
/* read arity */ \
arity = read_uint32(frame_ip); \
if (arity) { \
uint32 total_cell; \
uint16 *dst_offsets = NULL; \
uint8 *cells; \
int16 *src_offsets = NULL; \
/* read total cell num */ \
total_cell = read_uint32(frame_ip); \
/* cells */ \
cells = (uint8 *)frame_ip; \
frame_ip += arity * CELL_SIZE; \
/* src offsets */ \
src_offsets = (int16 *)frame_ip; \
frame_ip += arity * sizeof(int16); \
/* dst offsets */ \
dst_offsets = (uint16 *)frame_ip; \
frame_ip += arity * sizeof(uint16); \
if (arity == 1) { \
if (cells[0] == 1) { \
frame_lp[dst_offsets[0]] = frame_lp[src_offsets[0]]; \
/* Ignore constants because they are not reference */ \
if (src_offsets[0] >= 0) { \
CLEAR_FRAME_REF((unsigned)(src_offsets[0])); \
SET_FRAME_REF(dst_offsets[0]); \
} \
} \
else if (cells[0] == 2) { \
PUT_I64_TO_ADDR( \
frame_lp + dst_offsets[0], \
GET_I64_FROM_ADDR(frame_lp + src_offsets[0])); \
/* Ignore constants because they are not reference */ \
if (src_offsets[0] >= 0) { \
CLEAR_FRAME_REF((unsigned)src_offsets[0]); \
CLEAR_FRAME_REF((unsigned)(src_offsets[0] + 1)); \
SET_FRAME_REF((unsigned)dst_offsets[0]); \
SET_FRAME_REF((unsigned)(dst_offsets[0] + 1)); \
} \
} \
} \
else { \
if (!copy_stack_values(module, frame_lp, arity, frame_ref, \
total_cell, cells, src_offsets, \
dst_offsets)) \
goto got_exception; \
} \
} \
frame_ip = (uint8 *)LOAD_PTR(frame_ip); \
} while (0)
#else
#define RECOVER_BR_INFO() \
do { \
uint32 arity; \
/* read arity */ \
arity = read_uint32(frame_ip); \
if (arity) { \
uint32 total_cell; \
uint16 *dst_offsets = NULL; \
uint8 *cells; \
int16 *src_offsets = NULL; \
/* read total cell num */ \
total_cell = read_uint32(frame_ip); \
/* cells */ \
cells = (uint8 *)frame_ip; \
frame_ip += arity * CELL_SIZE; \
/* src offsets */ \
src_offsets = (int16 *)frame_ip; \
frame_ip += arity * sizeof(int16); \
/* dst offsets */ \
dst_offsets = (uint16 *)frame_ip; \
frame_ip += arity * sizeof(uint16); \
if (arity == 1) { \
if (cells[0] == 1) \
frame_lp[dst_offsets[0]] = frame_lp[src_offsets[0]]; \
else if (cells[0] == 2) { \
PUT_I64_TO_ADDR( \
frame_lp + dst_offsets[0], \
GET_I64_FROM_ADDR(frame_lp + src_offsets[0])); \
} \
} \
else { \
if (!copy_stack_values(module, frame_lp, arity, total_cell, \
cells, src_offsets, dst_offsets)) \
goto got_exception; \
} \
} \
frame_ip = (uint8 *)LOAD_PTR(frame_ip); \
} while (0)
#endif
#define SKIP_BR_INFO() \
do { \
uint32 arity; \
/* read and skip arity */ \
arity = read_uint32(frame_ip); \
if (arity) { \
/* skip total cell num */ \
frame_ip += sizeof(uint32); \
/* skip cells, src offsets and dst offsets */ \
frame_ip += (CELL_SIZE + sizeof(int16) + sizeof(uint16)) * arity; \
} \
/* skip target address */ \
frame_ip += sizeof(uint8 *); \
} while (0)
static inline int32
sign_ext_8_32(int8 val)
{
if (val & 0x80)
return (int32)val | (int32)0xffffff00;
return val;
}
static inline int32
sign_ext_16_32(int16 val)
{
if (val & 0x8000)
return (int32)val | (int32)0xffff0000;
return val;
}
static inline int64
sign_ext_8_64(int8 val)
{
if (val & 0x80)
return (int64)val | (int64)0xffffffffffffff00LL;
return val;
}
static inline int64
sign_ext_16_64(int16 val)
{
if (val & 0x8000)
return (int64)val | (int64)0xffffffffffff0000LL;
return val;
}
static inline int64
sign_ext_32_64(int32 val)
{
if (val & (int32)0x80000000)
return (int64)val | (int64)0xffffffff00000000LL;
return val;
}
static inline void
word_copy(uint32 *dest, uint32 *src, unsigned num)
{
bh_assert(dest != NULL);
bh_assert(src != NULL);
bh_assert(num > 0);
if (dest != src) {
/* No overlap buffer */
bh_assert(!((src < dest) && (dest < src + num)));
for (; num > 0; num--)
*dest++ = *src++;
}
}
static inline WASMInterpFrame *
ALLOC_FRAME(WASMExecEnv *exec_env, uint32 size, WASMInterpFrame *prev_frame)
{
WASMInterpFrame *frame = wasm_exec_env_alloc_wasm_frame(exec_env, size);
if (frame) {
frame->prev_frame = prev_frame;
#if WASM_ENABLE_PERF_PROFILING != 0
frame->time_started = os_time_thread_cputime_us();
#endif
}
else {
wasm_set_exception((WASMModuleInstance *)exec_env->module_inst,
"wasm operand stack overflow");
}
return frame;
}
static inline void
FREE_FRAME(WASMExecEnv *exec_env, WASMInterpFrame *frame)
{
#if WASM_ENABLE_PERF_PROFILING != 0
if (frame->function) {
WASMInterpFrame *prev_frame = frame->prev_frame;
uint64 time_elapsed = os_time_thread_cputime_us() - frame->time_started;
frame->function->total_exec_time += time_elapsed;
frame->function->total_exec_cnt++;
/* parent function */
if (prev_frame && prev_frame->function)
prev_frame->function->children_exec_time += time_elapsed;
}
#endif
wasm_exec_env_free_wasm_frame(exec_env, frame);
}
static void
wasm_interp_call_func_native(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMFunctionImport *func_import = cur_func->u.func_import;
CApiFuncImport *c_api_func_import = NULL;
unsigned local_cell_num =
cur_func->param_cell_num > 2 ? cur_func->param_cell_num : 2;
unsigned all_cell_num;
WASMInterpFrame *frame;
uint32 argv_ret[2], cur_func_index;
void *native_func_pointer = NULL;
bool ret;
#if WASM_ENABLE_GC != 0
WASMFuncType *func_type;
uint8 *frame_ref;
#endif
all_cell_num = local_cell_num;
#if WASM_ENABLE_GC != 0
all_cell_num += (local_cell_num + 3) / 4;
#endif
if (!wasm_runtime_detect_native_stack_overflow(exec_env)) {
return;
}
if (!(frame =
ALLOC_FRAME(exec_env, wasm_interp_interp_frame_size(all_cell_num),
prev_frame)))
return;
frame->function = cur_func;
frame->ip = NULL;
frame->lp = frame->operand;
#if WASM_ENABLE_GC != 0
frame->frame_ref = (uint8 *)(frame->lp + local_cell_num);
init_frame_refs(frame->frame_ref, local_cell_num, cur_func);
#endif
wasm_exec_env_set_cur_frame(exec_env, frame);
cur_func_index = (uint32)(cur_func - module_inst->e->functions);
bh_assert(cur_func_index < module_inst->module->import_function_count);
if (!func_import->call_conv_wasm_c_api) {
native_func_pointer = module_inst->import_func_ptrs[cur_func_index];
}
else if (module_inst->c_api_func_imports) {
c_api_func_import = module_inst->c_api_func_imports + cur_func_index;
native_func_pointer = c_api_func_import->func_ptr_linked;
}
if (!native_func_pointer) {
char buf[128];
snprintf(buf, sizeof(buf),
"failed to call unlinked import function (%s, %s)",
func_import->module_name, func_import->field_name);
wasm_set_exception((WASMModuleInstance *)module_inst, buf);
return;
}
if (func_import->call_conv_wasm_c_api) {
ret = wasm_runtime_invoke_c_api_native(
(WASMModuleInstanceCommon *)module_inst, native_func_pointer,
func_import->func_type, cur_func->param_cell_num, frame->lp,
c_api_func_import->with_env_arg, c_api_func_import->env_arg);
if (ret) {
argv_ret[0] = frame->lp[0];
argv_ret[1] = frame->lp[1];
}
}
else if (!func_import->call_conv_raw) {
ret = wasm_runtime_invoke_native(
exec_env, native_func_pointer, func_import->func_type,
func_import->signature, func_import->attachment, frame->lp,
cur_func->param_cell_num, argv_ret);
}
else {
ret = wasm_runtime_invoke_native_raw(
exec_env, native_func_pointer, func_import->func_type,
func_import->signature, func_import->attachment, frame->lp,
cur_func->param_cell_num, argv_ret);
}
if (!ret)
return;
#if WASM_ENABLE_GC != 0
func_type = cur_func->u.func_import->func_type;
if (func_type->result_count
&& wasm_is_type_reftype(func_type->types[cur_func->param_count])
&& !wasm_is_reftype_i31ref(func_type->types[cur_func->param_count])) {
frame_ref = prev_frame->frame_ref + prev_frame->ret_offset;
#if UINTPTR_MAX == UINT64_MAX
*frame_ref = *(frame_ref + 1) = 1;
#else
*frame_ref = 1;
#endif
}
#endif
if (cur_func->ret_cell_num == 1) {
prev_frame->lp[prev_frame->ret_offset] = argv_ret[0];
}
else if (cur_func->ret_cell_num == 2) {
prev_frame->lp[prev_frame->ret_offset] = argv_ret[0];
prev_frame->lp[prev_frame->ret_offset + 1] = argv_ret[1];
}
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
}
#if WASM_ENABLE_MULTI_MODULE != 0
static void
wasm_interp_call_func_bytecode(WASMModuleInstance *module,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame);
static void
wasm_interp_call_func_import(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMModuleInstance *sub_module_inst = cur_func->import_module_inst;
WASMFunctionInstance *sub_func_inst = cur_func->import_func_inst;
WASMFunctionImport *func_import = cur_func->u.func_import;
uint8 *ip = prev_frame->ip;
char buf[128];
WASMExecEnv *sub_module_exec_env = NULL;
uintptr_t aux_stack_origin_boundary = 0;
uintptr_t aux_stack_origin_bottom = 0;
/*
* perform stack overflow check before calling
* wasm_interp_call_func_bytecode recursively.
*/
if (!wasm_runtime_detect_native_stack_overflow(exec_env)) {
return;
}
if (!sub_func_inst) {
snprintf(buf, sizeof(buf),
"failed to call unlinked import function (%s, %s)",
func_import->module_name, func_import->field_name);
wasm_set_exception(module_inst, buf);
return;
}
/* Switch exec_env but keep using the same one by replacing necessary
* variables */
sub_module_exec_env = wasm_runtime_get_exec_env_singleton(
(WASMModuleInstanceCommon *)sub_module_inst);
if (!sub_module_exec_env) {
wasm_set_exception(module_inst, "create singleton exec_env failed");
return;
}
/* - module_inst */
wasm_exec_env_set_module_inst(exec_env,
(WASMModuleInstanceCommon *)sub_module_inst);
/* - aux_stack_boundary */
aux_stack_origin_boundary = exec_env->aux_stack_boundary;
exec_env->aux_stack_boundary = sub_module_exec_env->aux_stack_boundary;
/* - aux_stack_bottom */
aux_stack_origin_bottom = exec_env->aux_stack_bottom;
exec_env->aux_stack_bottom = sub_module_exec_env->aux_stack_bottom;
/* set ip NULL to make call_func_bytecode return after executing
this function */
prev_frame->ip = NULL;
/* call function of sub-module*/
wasm_interp_call_func_bytecode(sub_module_inst, exec_env, sub_func_inst,
prev_frame);
/* restore ip and other replaced */
prev_frame->ip = ip;
exec_env->aux_stack_boundary = aux_stack_origin_boundary;
exec_env->aux_stack_bottom = aux_stack_origin_bottom;
wasm_exec_env_restore_module_inst(exec_env,
(WASMModuleInstanceCommon *)module_inst);
}
#endif
#if WASM_ENABLE_THREAD_MGR != 0
#define CHECK_SUSPEND_FLAGS() \
do { \
WASM_SUSPEND_FLAGS_LOCK(exec_env->wait_lock); \
if (WASM_SUSPEND_FLAGS_GET(exec_env->suspend_flags) \
& WASM_SUSPEND_FLAG_TERMINATE) { \
/* terminate current thread */ \
WASM_SUSPEND_FLAGS_UNLOCK(exec_env->wait_lock); \
return; \
} \
/* TODO: support suspend and breakpoint */ \
WASM_SUSPEND_FLAGS_UNLOCK(exec_env->wait_lock); \
} while (0)
#endif
#if WASM_ENABLE_OPCODE_COUNTER != 0
typedef struct OpcodeInfo {
char *name;
uint64 count;
} OpcodeInfo;
/* clang-format off */
#define HANDLE_OPCODE(op) \
{ \
#op, 0 \
}
DEFINE_GOTO_TABLE(OpcodeInfo, opcode_table);
#undef HANDLE_OPCODE
/* clang-format on */
static void
wasm_interp_dump_op_count()
{
uint32 i;
uint64 total_count = 0;
for (i = 0; i < WASM_OP_IMPDEP; i++)
total_count += opcode_table[i].count;
os_printf("total opcode count: %ld\n", total_count);
for (i = 0; i < WASM_OP_IMPDEP; i++)
if (opcode_table[i].count > 0)
os_printf("\t\t%s count:\t\t%ld,\t\t%.2f%%\n", opcode_table[i].name,
opcode_table[i].count,
opcode_table[i].count * 100.0f / total_count);
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES != 0
/* #define HANDLE_OP(opcode) HANDLE_##opcode:printf(#opcode"\n"); */
#if WASM_ENABLE_OPCODE_COUNTER != 0
#define HANDLE_OP(opcode) HANDLE_##opcode : opcode_table[opcode].count++;
#else
#define HANDLE_OP(opcode) HANDLE_##opcode:
#endif
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
#define FETCH_OPCODE_AND_DISPATCH() \
do { \
const void *p_label_addr = *(void **)frame_ip; \
frame_ip += sizeof(void *); \
goto *p_label_addr; \
} while (0)
#else
#if UINTPTR_MAX == UINT64_MAX
#define FETCH_OPCODE_AND_DISPATCH() \
do { \
const void *p_label_addr; \
bh_assert(((uintptr_t)frame_ip & 1) == 0); \
/* int32 relative offset was emitted in 64-bit target */ \
p_label_addr = label_base + (int32)LOAD_U32_WITH_2U16S(frame_ip); \
frame_ip += sizeof(int32); \
goto *p_label_addr; \
} while (0)
#else
#define FETCH_OPCODE_AND_DISPATCH() \
do { \
const void *p_label_addr; \
bh_assert(((uintptr_t)frame_ip & 1) == 0); \
/* uint32 label address was emitted in 32-bit target */ \
p_label_addr = (void *)(uintptr_t)LOAD_U32_WITH_2U16S(frame_ip); \
frame_ip += sizeof(int32); \
goto *p_label_addr; \
} while (0)
#endif
#endif /* end of WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS */
#define HANDLE_OP_END() FETCH_OPCODE_AND_DISPATCH()
#else /* else of WASM_ENABLE_LABELS_AS_VALUES */
#define HANDLE_OP(opcode) case opcode:
#define HANDLE_OP_END() continue
#endif /* end of WASM_ENABLE_LABELS_AS_VALUES */
#if WASM_ENABLE_LABELS_AS_VALUES != 0
static void **global_handle_table;
#endif
static inline uint8 *
get_global_addr(uint8 *global_data, WASMGlobalInstance *global)
{
#if WASM_ENABLE_MULTI_MODULE == 0
return global_data + global->data_offset;
#else
return global->import_global_inst
? global->import_module_inst->global_data
+ global->import_global_inst->data_offset
: global_data + global->data_offset;
#endif
}
static void
wasm_interp_call_func_bytecode(WASMModuleInstance *module,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMMemoryInstance *memory = wasm_get_default_memory(module);
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
uint64 linear_mem_size = 0;
if (memory)
#if WASM_ENABLE_THREAD_MGR == 0
linear_mem_size = memory->memory_data_size;
#else
linear_mem_size = GET_LINEAR_MEMORY_SIZE(memory);
#endif
#endif
WASMGlobalInstance *globals = module->e ? module->e->globals : NULL;
WASMGlobalInstance *global;
uint8 *global_data = module->global_data;
uint8 opcode_IMPDEP = WASM_OP_IMPDEP;
WASMInterpFrame *frame = NULL;
/* Points to this special opcode so as to jump to the
* call_method_from_entry. */
register uint8 *frame_ip = &opcode_IMPDEP; /* cache of frame->ip */
register uint32 *frame_lp = NULL; /* cache of frame->lp */
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 && UINTPTR_MAX == UINT64_MAX
/* cache of label base addr */
register uint8 *label_base = &&HANDLE_WASM_OP_UNREACHABLE;
#endif
#endif
#if WASM_ENABLE_GC != 0
register uint8 *frame_ref = NULL; /* cache of frame->ref */
uint32 local_cell_num = 0;
int16 opnd_off;
#endif
uint8 *frame_ip_end = frame_ip + 1;
uint32 cond, count, fidx, tidx, frame_size = 0;
uint32 all_cell_num = 0;
int16 addr1, addr2, addr_ret = 0;
int32 didx, val;
uint8 *maddr = NULL;
uint32 local_idx, local_offset, global_idx;
uint8 opcode = 0, local_type, *global_addr;
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0
#if WASM_CONFIGURABLE_BOUNDS_CHECKS != 0
bool disable_bounds_checks = !wasm_runtime_is_bounds_checks_enabled(
(WASMModuleInstanceCommon *)module);
#else
bool disable_bounds_checks = false;
#endif
#endif
#if WASM_ENABLE_GC != 0
WASMObjectRef gc_obj;
WASMStructObjectRef struct_obj;
WASMArrayObjectRef array_obj;
WASMFuncObjectRef func_obj;
WASMI31ObjectRef i31_obj;
WASMExternrefObjectRef externref_obj;
uint32 type_idx;
#if WASM_ENABLE_STRINGREF != 0
WASMString str_obj;
WASMStringrefObjectRef stringref_obj;
WASMStringviewWTF8ObjectRef stringview_wtf8_obj;
WASMStringviewWTF16ObjectRef stringview_wtf16_obj;
WASMStringviewIterObjectRef stringview_iter_obj;
#endif
#endif
#if WASM_ENABLE_TAIL_CALL != 0 || WASM_ENABLE_GC != 0
bool is_return_call = false;
#endif
#if WASM_ENABLE_SHARED_HEAP != 0
WASMSharedHeap *shared_heap = module->e ? module->e->shared_heap : NULL;
uint8 *shared_heap_base_addr = shared_heap ? shared_heap->base_addr : NULL;
/*
#if WASM_ENABLE_MEMORY64 != 0
uint64 shared_heap_start_off =
shared_heap ? (is_memory64 ? shared_heap->start_off_mem64
: shared_heap->start_off_mem32)
: 0;
uint64 shared_heap_end_off =
shared_heap ? (is_memory64 ? UINT64_MAX : UINT32_MAX) : 0;
#else
*/ /* TODO: uncomment the code when memory64 is enabled for fast-interp */
uint64 shared_heap_start_off =
shared_heap ? shared_heap->start_off_mem32 : 0;
uint64 shared_heap_end_off = shared_heap ? UINT32_MAX : 0;
/* #endif */
#endif /* end of WASM_ENABLE_SHARED_HEAP != 0 */
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define HANDLE_OPCODE(op) &&HANDLE_##op
DEFINE_GOTO_TABLE(const void *, handle_table);
#undef HANDLE_OPCODE
if (exec_env == NULL) {
global_handle_table = (void **)handle_table;
return;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES == 0
while (frame_ip < frame_ip_end) {
opcode = *frame_ip++;
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0
frame_ip++;
#endif
switch (opcode) {
#else
goto *handle_table[WASM_OP_IMPDEP];
#endif
/* control instructions */
HANDLE_OP(WASM_OP_UNREACHABLE)
{
wasm_set_exception(module, "unreachable");
goto got_exception;
}
HANDLE_OP(WASM_OP_IF)
{
cond = (uint32)POP_I32();
if (cond == 0) {
uint8 *else_addr = (uint8 *)LOAD_PTR(frame_ip);
if (else_addr == NULL) {
frame_ip =
(uint8 *)LOAD_PTR(frame_ip + sizeof(uint8 *));
}
else {
frame_ip = else_addr;
}
}
else {
frame_ip += sizeof(uint8 *) * 2;
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_ELSE)
{
frame_ip = (uint8 *)LOAD_PTR(frame_ip);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
recover_br_info:
RECOVER_BR_INFO();
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR_IF)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
cond = frame_lp[GET_OFFSET()];
if (cond)
goto recover_br_info;
else
SKIP_BR_INFO();
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR_TABLE)
{
uint32 arity, br_item_size;
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
count = read_uint32(frame_ip);
didx = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
if (!(didx >= 0 && (uint32)didx < count))
didx = count;
/* all br items must have the same arity and item size,
so we only calculate the first item size */
arity = LOAD_U32_WITH_2U16S(frame_ip);
br_item_size = sizeof(uint32); /* arity */
if (arity) {
/* total cell num */
br_item_size += sizeof(uint32);
/* cells, src offsets and dst offsets */
br_item_size +=
(CELL_SIZE + sizeof(int16) + sizeof(uint16)) * arity;
}
/* target address */
br_item_size += sizeof(uint8 *);
frame_ip += br_item_size * didx;
goto recover_br_info;
}
HANDLE_OP(WASM_OP_RETURN)
{
uint32 ret_idx;
WASMFuncType *func_type;
int32 off;
uint32 ret_offset;
uint8 *ret_types;
if (cur_func->is_import_func)
func_type = cur_func->u.func_import->func_type;
else
func_type = cur_func->u.func->func_type;
/* types of each return value */
ret_types = func_type->types + func_type->param_count;
ret_offset = prev_frame->ret_offset;
for (ret_idx = 0,
off = (int32)sizeof(int16) * (func_type->result_count - 1);
ret_idx < func_type->result_count;
ret_idx++, off -= (int32)sizeof(int16)) {
if (ret_types[ret_idx] == VALUE_TYPE_I64
|| ret_types[ret_idx] == VALUE_TYPE_F64) {
PUT_I64_TO_ADDR(prev_frame->lp + ret_offset,
GET_OPERAND(uint64, I64, off));
ret_offset += 2;
}
else if (ret_types[ret_idx] == VALUE_TYPE_V128) {
PUT_V128_TO_ADDR(prev_frame->lp + ret_offset,
GET_OPERAND_V128(off));
ret_offset += 4;
}
#if WASM_ENABLE_GC != 0
else if (wasm_is_type_reftype(ret_types[ret_idx])) {
PUT_REF_TO_ADDR(prev_frame->lp + ret_offset,
GET_OPERAND(void *, REF, off));
if (!wasm_is_reftype_i31ref(ret_types[ret_idx])) {
*(prev_frame->frame_ref + ret_offset) = 1;
#if UINTPTR_MAX == UINT64_MAX
*(prev_frame->frame_ref + ret_offset + 1) = 1;
#endif
}
ret_offset += REF_CELL_NUM;
}
#endif
else {
prev_frame->lp[ret_offset] =
GET_OPERAND(uint32, I32, off);
ret_offset++;
}
}
goto return_func;
}
HANDLE_OP(WASM_OP_CALL_INDIRECT)
#if WASM_ENABLE_TAIL_CALL != 0
HANDLE_OP(WASM_OP_RETURN_CALL_INDIRECT)
#endif
{
WASMFuncType *cur_type, *cur_func_type;
WASMTableInstance *tbl_inst;
uint32 tbl_idx;
#if WASM_ENABLE_TAIL_CALL != 0
GET_OPCODE();
#endif
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
tidx = read_uint32(frame_ip);
cur_type = (WASMFuncType *)module->module->types[tidx];
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
val = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
if ((uint32)val >= tbl_inst->cur_size) {
wasm_set_exception(module, "undefined element");
goto got_exception;
}
/* clang-format off */
#if WASM_ENABLE_GC == 0
fidx = (uint32)tbl_inst->elems[val];
if (fidx == (uint32)-1) {
wasm_set_exception(module, "uninitialized element");
goto got_exception;
}
#else
func_obj = (WASMFuncObjectRef)tbl_inst->elems[val];
if (!func_obj) {
wasm_set_exception(module, "uninitialized element");
goto got_exception;
}
fidx = wasm_func_obj_get_func_idx_bound(func_obj);
#endif
/* clang-format on */
/*
* we might be using a table injected by host or
* another module. in that case, we don't validate
* the elem value while loading
*/
if (fidx >= module->e->function_count) {
wasm_set_exception(module, "unknown function");
goto got_exception;
}
/* always call module own functions */
cur_func = module->e->functions + fidx;
if (cur_func->is_import_func)
cur_func_type = cur_func->u.func_import->func_type;
else
cur_func_type = cur_func->u.func->func_type;
/* clang-format off */
#if WASM_ENABLE_GC == 0
if (cur_type != cur_func_type) {
wasm_set_exception(module, "indirect call type mismatch");
goto got_exception;
}
#else
if (!wasm_func_type_is_super_of(cur_type, cur_func_type)) {
wasm_set_exception(module, "indirect call type mismatch");
goto got_exception;
}
#endif
/* clang-format on */
#if WASM_ENABLE_TAIL_CALL != 0
if (opcode == WASM_OP_RETURN_CALL_INDIRECT)
goto call_func_from_return_call;
#endif
goto call_func_from_interp;
}
#if WASM_ENABLE_EXCE_HANDLING != 0
HANDLE_OP(WASM_OP_TRY)
HANDLE_OP(WASM_OP_CATCH)
HANDLE_OP(WASM_OP_THROW)
HANDLE_OP(WASM_OP_RETHROW)
HANDLE_OP(WASM_OP_DELEGATE)
HANDLE_OP(WASM_OP_CATCH_ALL)
HANDLE_OP(EXT_OP_TRY)
{
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
#endif
/* parametric instructions */
HANDLE_OP(WASM_OP_SELECT)
{
cond = frame_lp[GET_OFFSET()];
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
if (!cond) {
if (addr_ret != addr1)
frame_lp[addr_ret] = frame_lp[addr1];
}
else {
if (addr_ret != addr2)
frame_lp[addr_ret] = frame_lp[addr2];
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SELECT_64)
{
cond = frame_lp[GET_OFFSET()];
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
if (!cond) {
if (addr_ret != addr1)
PUT_I64_TO_ADDR(frame_lp + addr_ret,
GET_I64_FROM_ADDR(frame_lp + addr1));
}
else {
if (addr_ret != addr2)
PUT_I64_TO_ADDR(frame_lp + addr_ret,
GET_I64_FROM_ADDR(frame_lp + addr2));
}
HANDLE_OP_END();
}
#if WASM_ENABLE_GC != 0
HANDLE_OP(WASM_OP_SELECT_T)
{
cond = frame_lp[GET_OFFSET()];
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
if (!cond) {
if (addr_ret != addr1)
PUT_REF_TO_ADDR(frame_lp + addr_ret,
GET_REF_FROM_ADDR(frame_lp + addr1));
}
else {
if (addr_ret != addr2)
PUT_REF_TO_ADDR(frame_lp + addr_ret,
GET_REF_FROM_ADDR(frame_lp + addr2));
}
{
uint8 orig_ref = 0;
/* Ignore constants because they are not reference */
if (addr1 >= 0) {
orig_ref = *FRAME_REF(addr1);
CLEAR_FRAME_REF(addr1);
}
if (addr2 >= 0) {
CLEAR_FRAME_REF(addr2);
}
if (orig_ref) {
SET_FRAME_REF(addr_ret);
}
}
HANDLE_OP_END();
}
#endif
#if WASM_ENABLE_REF_TYPES != 0 || WASM_ENABLE_GC != 0
HANDLE_OP(WASM_OP_TABLE_GET)
{
uint32 tbl_idx, elem_idx;
WASMTableInstance *tbl_inst;
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
elem_idx = POP_I32();
if (elem_idx >= tbl_inst->cur_size) {
wasm_set_exception(module, "out of bounds table access");
goto got_exception;
}
#if WASM_ENABLE_GC == 0
PUSH_I32(tbl_inst->elems[elem_idx]);
#else
PUSH_REF(tbl_inst->elems[elem_idx]);
#endif
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_TABLE_SET)
{
uint32 tbl_idx, elem_idx;
WASMTableInstance *tbl_inst;
table_elem_type_t elem_val;
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
#if WASM_ENABLE_GC == 0
elem_val = POP_I32();
#else
elem_val = POP_REF();
#endif
elem_idx = POP_I32();
if (elem_idx >= tbl_inst->cur_size) {
wasm_set_exception(module, "out of bounds table access");
goto got_exception;
}
tbl_inst->elems[elem_idx] = elem_val;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_NULL)
{
#if WASM_ENABLE_GC == 0
PUSH_I32(NULL_REF);
#else
PUSH_REF(NULL_REF);
#endif
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_IS_NULL)
{
#if WASM_ENABLE_GC == 0
uint32 ref_val;
ref_val = POP_I32();
#else
void *ref_val;
ref_val = POP_REF();
#endif
PUSH_I32(ref_val == NULL_REF ? 1 : 0);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_FUNC)
{
uint32 func_idx = read_uint32(frame_ip);
#if WASM_ENABLE_GC == 0
PUSH_I32(func_idx);
#else
SYNC_ALL_TO_FRAME();
if (!(gc_obj = wasm_create_func_obj(module, func_idx, true,
NULL, 0))) {
goto got_exception;
}
PUSH_REF(gc_obj);
#endif
HANDLE_OP_END();
}
#endif /* end of WASM_ENABLE_REF_TYPES != 0 || WASM_ENABLE_GC != 0 */
#if WASM_ENABLE_GC != 0
HANDLE_OP(WASM_OP_CALL_REF)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
func_obj = POP_REF();
if (!func_obj) {
wasm_set_exception(module, "null function reference");
goto got_exception;
}
fidx = wasm_func_obj_get_func_idx_bound(func_obj);
cur_func = module->e->functions + fidx;
goto call_func_from_interp;
}
HANDLE_OP(WASM_OP_RETURN_CALL_REF)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
func_obj = POP_REF();
if (!func_obj) {
wasm_set_exception(module, "null function reference");
goto got_exception;
}
fidx = wasm_func_obj_get_func_idx_bound(func_obj);
cur_func = module->e->functions + fidx;
goto call_func_from_return_call;
}
HANDLE_OP(WASM_OP_REF_AS_NON_NULL)
{
gc_obj = POP_REF();
if (gc_obj == NULL_REF) {
wasm_set_exception(module, "null reference");
goto got_exception;
}
PUSH_REF(gc_obj);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_EQ)
{
WASMObjectRef gc_obj1, gc_obj2;
gc_obj2 = POP_REF();
gc_obj1 = POP_REF();
val = wasm_obj_equal(gc_obj1, gc_obj2);
PUSH_I32(val);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR_ON_NULL)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
opnd_off = GET_OFFSET();
gc_obj = GET_REF_FROM_ADDR(frame_lp + opnd_off);
if (gc_obj == NULL_REF) {
CLEAR_FRAME_REF(opnd_off);
goto recover_br_info;
}
else {
SKIP_BR_INFO();
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR_ON_NON_NULL)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
opnd_off = GET_OFFSET();
gc_obj = GET_REF_FROM_ADDR(frame_lp + opnd_off);
if (gc_obj != NULL_REF) {
goto recover_br_info;
}
else {
CLEAR_FRAME_REF(opnd_off);
SKIP_BR_INFO();
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_GC_PREFIX)
{
GET_OPCODE();
switch (opcode) {
case WASM_OP_STRUCT_NEW:
case WASM_OP_STRUCT_NEW_DEFAULT:
{
WASMModule *wasm_module = module->module;
WASMStructType *struct_type;
WASMRttType *rtt_type;
WASMValue field_value = { 0 };
type_idx = read_uint32(frame_ip);
struct_type =
(WASMStructType *)module->module->types[type_idx];
if (!(rtt_type = wasm_rtt_type_new(
(WASMType *)struct_type, type_idx,
wasm_module->rtt_types,
wasm_module->type_count,
&wasm_module->rtt_type_lock))) {
wasm_set_exception(module,
"create rtt type failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
struct_obj = wasm_struct_obj_new(exec_env, rtt_type);
if (!struct_obj) {
wasm_set_exception(module,
"create struct object failed");
goto got_exception;
}
if (opcode == WASM_OP_STRUCT_NEW) {
WASMStructFieldType *fields = struct_type->fields;
int32 field_count = (int32)struct_type->field_count;
int32 field_idx;
uint8 field_type;
for (field_idx = field_count - 1; field_idx >= 0;
field_idx--) {
field_type = fields[field_idx].field_type;
if (wasm_is_type_reftype(field_type)) {
field_value.gc_obj = POP_REF();
}
else if (field_type == VALUE_TYPE_I32
|| field_type == VALUE_TYPE_F32
|| field_type == PACKED_TYPE_I8
|| field_type == PACKED_TYPE_I16) {
field_value.i32 = POP_I32();
}
else {
field_value.i64 = POP_I64();
}
wasm_struct_obj_set_field(struct_obj, field_idx,
&field_value);
}
}
PUSH_REF(struct_obj);
HANDLE_OP_END();
}
case WASM_OP_STRUCT_GET:
case WASM_OP_STRUCT_GET_S:
case WASM_OP_STRUCT_GET_U:
{
WASMStructType *struct_type;
WASMValue field_value = { 0 };
uint32 field_idx;
uint8 field_type;
type_idx = read_uint32(frame_ip);
field_idx = read_uint32(frame_ip);
struct_type =
(WASMStructType *)module->module->types[type_idx];
struct_obj = POP_REF();
if (!struct_obj) {
wasm_set_exception(module,
"null structure reference");
goto got_exception;
}
wasm_struct_obj_get_field(
struct_obj, field_idx,
opcode == WASM_OP_STRUCT_GET_S ? true : false,
&field_value);
field_type = struct_type->fields[field_idx].field_type;
if (wasm_is_reftype_i31ref(field_type)) {
PUSH_I31REF(field_value.gc_obj);
}
else if (wasm_is_type_reftype(field_type)) {
PUSH_REF(field_value.gc_obj);
}
else if (field_type == VALUE_TYPE_I32
|| field_type == VALUE_TYPE_F32
|| field_type == PACKED_TYPE_I8
|| field_type == PACKED_TYPE_I16) {
PUSH_I32(field_value.i32);
}
else {
PUSH_I64(field_value.i64);
}
HANDLE_OP_END();
}
case WASM_OP_STRUCT_SET:
{
WASMStructType *struct_type;
WASMValue field_value = { 0 };
uint32 field_idx;
uint8 field_type;
type_idx = read_uint32(frame_ip);
field_idx = read_uint32(frame_ip);
struct_type =
(WASMStructType *)module->module->types[type_idx];
field_type = struct_type->fields[field_idx].field_type;
if (wasm_is_type_reftype(field_type)) {
field_value.gc_obj = POP_REF();
}
else if (field_type == VALUE_TYPE_I32
|| field_type == VALUE_TYPE_F32
|| field_type == PACKED_TYPE_I8
|| field_type == PACKED_TYPE_I16) {
field_value.i32 = POP_I32();
}
else {
field_value.i64 = POP_I64();
}
struct_obj = POP_REF();
if (!struct_obj) {
wasm_set_exception(module,
"null structure reference");
goto got_exception;
}
wasm_struct_obj_set_field(struct_obj, field_idx,
&field_value);
HANDLE_OP_END();
}
case WASM_OP_ARRAY_NEW:
case WASM_OP_ARRAY_NEW_DEFAULT:
case WASM_OP_ARRAY_NEW_FIXED:
{
WASMModule *wasm_module = module->module;
WASMArrayType *array_type;
WASMRttType *rtt_type;
WASMValue array_elem = { 0 };
uint32 array_len, i;
type_idx = read_uint32(frame_ip);
array_type =
(WASMArrayType *)wasm_module->types[type_idx];
if (!(rtt_type = wasm_rtt_type_new(
(WASMType *)array_type, type_idx,
wasm_module->rtt_types,
wasm_module->type_count,
&wasm_module->rtt_type_lock))) {
wasm_set_exception(module,
"create rtt type failed");
goto got_exception;
}
if (opcode != WASM_OP_ARRAY_NEW_FIXED)
array_len = POP_I32();
else
array_len = read_uint32(frame_ip);
if (opcode == WASM_OP_ARRAY_NEW) {
if (wasm_is_type_reftype(array_type->elem_type)) {
array_elem.gc_obj = POP_REF();
}
else if (array_type->elem_type == VALUE_TYPE_I32
|| array_type->elem_type == VALUE_TYPE_F32
|| array_type->elem_type == PACKED_TYPE_I8
|| array_type->elem_type
== PACKED_TYPE_I16) {
array_elem.i32 = POP_I32();
}
else {
array_elem.i64 = POP_I64();
}
}
SYNC_ALL_TO_FRAME();
array_obj = wasm_array_obj_new(exec_env, rtt_type,
array_len, &array_elem);
if (!array_obj) {
wasm_set_exception(module,
"create array object failed");
goto got_exception;
}
if (opcode == WASM_OP_ARRAY_NEW_FIXED) {
for (i = 0; i < array_len; i++) {
if (wasm_is_type_reftype(
array_type->elem_type)) {
array_elem.gc_obj = POP_REF();
}
else if (array_type->elem_type == VALUE_TYPE_I32
|| array_type->elem_type
== VALUE_TYPE_F32
|| array_type->elem_type
== PACKED_TYPE_I8
|| array_type->elem_type
== PACKED_TYPE_I16) {
array_elem.i32 = POP_I32();
}
else {
array_elem.i64 = POP_I64();
}
wasm_array_obj_set_elem(
array_obj, array_len - 1 - i, &array_elem);
}
}
PUSH_REF(array_obj);
HANDLE_OP_END();
}
case WASM_OP_ARRAY_NEW_DATA:
{
WASMModule *wasm_module = module->module;
WASMArrayType *array_type;
WASMRttType *rtt_type;
WASMValue array_elem = { 0 };
WASMDataSeg *data_seg;
uint8 *array_elem_base;
uint32 array_len, data_seg_idx, data_seg_offset;
uint32 elem_size = 0;
uint64 total_size;
type_idx = read_uint32(frame_ip);
data_seg_idx = read_uint32(frame_ip);
data_seg = wasm_module->data_segments[data_seg_idx];
array_type =
(WASMArrayType *)wasm_module->types[type_idx];
if (!(rtt_type = wasm_rtt_type_new(
(WASMType *)array_type, type_idx,
wasm_module->rtt_types,
wasm_module->type_count,
&wasm_module->rtt_type_lock))) {
wasm_set_exception(module,
"create rtt type failed");
goto got_exception;
}
array_len = POP_I32();
data_seg_offset = POP_I32();
switch (array_type->elem_type) {
case PACKED_TYPE_I8:
elem_size = 1;
break;
case PACKED_TYPE_I16:
elem_size = 2;
break;
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
elem_size = 4;
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
elem_size = 8;
break;
default:
bh_assert(0);
}
total_size = (uint64)elem_size * array_len;
if (data_seg_offset >= data_seg->data_length
|| total_size
> data_seg->data_length - data_seg_offset) {
wasm_set_exception(module,
"data segment out of bounds");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
array_obj = wasm_array_obj_new(exec_env, rtt_type,
array_len, &array_elem);
if (!array_obj) {
wasm_set_exception(module,
"create array object failed");
goto got_exception;
}
array_elem_base =
(uint8 *)wasm_array_obj_first_elem_addr(array_obj);
bh_memcpy_s(array_elem_base, (uint32)total_size,
data_seg->data + data_seg_offset,
(uint32)total_size);
PUSH_REF(array_obj);
HANDLE_OP_END();
}
case WASM_OP_ARRAY_NEW_ELEM:
{
/* TODO */
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
case WASM_OP_ARRAY_GET:
case WASM_OP_ARRAY_GET_S:
case WASM_OP_ARRAY_GET_U:
{
WASMArrayType *array_type;
WASMValue array_elem = { 0 };
uint32 elem_idx, elem_size_log;
type_idx = read_uint32(frame_ip);
array_type =
(WASMArrayType *)module->module->types[type_idx];
elem_idx = POP_I32();
array_obj = POP_REF();
if (!array_obj) {
wasm_set_exception(module, "null array reference");
goto got_exception;
}
if (elem_idx >= wasm_array_obj_length(array_obj)) {
wasm_set_exception(module,
"out of bounds array access");
goto got_exception;
}
wasm_array_obj_get_elem(
array_obj, elem_idx,
opcode == WASM_OP_ARRAY_GET_S ? true : false,
&array_elem);
elem_size_log = wasm_array_obj_elem_size_log(array_obj);
if (wasm_is_reftype_i31ref(array_type->elem_type)) {
PUSH_I31REF(array_elem.gc_obj);
}
else if (wasm_is_type_reftype(array_type->elem_type)) {
PUSH_REF(array_elem.gc_obj);
}
else if (elem_size_log < 3) {
PUSH_I32(array_elem.i32);
}
else {
PUSH_I64(array_elem.i64);
}
HANDLE_OP_END();
}
case WASM_OP_ARRAY_SET:
{
WASMArrayType *array_type;
WASMValue array_elem = { 0 };
uint32 elem_idx;
type_idx = read_uint32(frame_ip);
array_type =
(WASMArrayType *)module->module->types[type_idx];
if (wasm_is_type_reftype(array_type->elem_type)) {
array_elem.gc_obj = POP_REF();
}
else if (array_type->elem_type == VALUE_TYPE_I32
|| array_type->elem_type == VALUE_TYPE_F32
|| array_type->elem_type == PACKED_TYPE_I8
|| array_type->elem_type == PACKED_TYPE_I16) {
array_elem.i32 = POP_I32();
}
else {
array_elem.i64 = POP_I64();
}
elem_idx = POP_I32();
array_obj = POP_REF();
if (!array_obj) {
wasm_set_exception(module, "null array reference");
goto got_exception;
}
if (elem_idx >= wasm_array_obj_length(array_obj)) {
wasm_set_exception(module,
"out of bounds array access");
goto got_exception;
}
wasm_array_obj_set_elem(array_obj, elem_idx,
&array_elem);
HANDLE_OP_END();
}
case WASM_OP_ARRAY_LEN:
{
uint32 array_len;
array_obj = POP_REF();
if (!array_obj) {
wasm_set_exception(module, "null array reference");
goto got_exception;
}
array_len = wasm_array_obj_length(array_obj);
PUSH_I32(array_len);
HANDLE_OP_END();
}
case WASM_OP_ARRAY_FILL:
{
WASMArrayType *array_type;
WASMValue fill_value = { 0 };
uint32 start_offset, len;
type_idx = read_uint32(frame_ip);
array_type =
(WASMArrayType *)module->module->types[type_idx];
len = POP_I32();
if (wasm_is_type_reftype(array_type->elem_type)) {
fill_value.gc_obj = POP_REF();
}
else if (array_type->elem_type == VALUE_TYPE_I32
|| array_type->elem_type == VALUE_TYPE_F32
|| array_type->elem_type == PACKED_TYPE_I8
|| array_type->elem_type == PACKED_TYPE_I16) {
fill_value.i32 = POP_I32();
}
else {
fill_value.i64 = POP_I64();
}
start_offset = POP_I32();
array_obj = POP_REF();
if (!array_obj) {
wasm_set_exception(module, "null array reference");
goto got_exception;
}
if (len > 0) {
if ((uint64)start_offset + len
>= wasm_array_obj_length(array_obj)) {
wasm_set_exception(
module, "out of bounds array access");
goto got_exception;
}
wasm_array_obj_fill(array_obj, start_offset, len,
&fill_value);
}
HANDLE_OP_END();
}
case WASM_OP_ARRAY_COPY:
{
uint32 dst_offset, src_offset, len, src_type_index;
WASMArrayObjectRef src_obj, dst_obj;
type_idx = read_uint32(frame_ip);
src_type_index = read_uint32(frame_ip);
len = POP_I32();
src_offset = POP_I32();
src_obj = POP_REF();
dst_offset = POP_I32();
dst_obj = POP_REF();
if (!src_obj || !dst_obj) {
wasm_set_exception(module, "null array reference");
goto got_exception;
}
if (len > 0) {
if ((dst_offset > UINT32_MAX - len)
|| (dst_offset + len
> wasm_array_obj_length(dst_obj))
|| (src_offset > UINT32_MAX - len)
|| (src_offset + len
> wasm_array_obj_length(src_obj))) {
wasm_set_exception(
module, "out of bounds array access");
goto got_exception;
}
wasm_array_obj_copy(dst_obj, dst_offset, src_obj,
src_offset, len);
}
(void)src_type_index;
HANDLE_OP_END();
}
case WASM_OP_REF_I31:
{
uint32 i31_val;
i31_val = POP_I32();
i31_obj = wasm_i31_obj_new(i31_val);
PUSH_I31REF(i31_obj);
HANDLE_OP_END();
}
case WASM_OP_I31_GET_S:
case WASM_OP_I31_GET_U:
{
uint32 i31_val;
i31_obj = (WASMI31ObjectRef)POP_REF();
if (!i31_obj) {
wasm_set_exception(module, "null i31 reference");
goto got_exception;
}
i31_val = (uint32)(((uintptr_t)i31_obj) >> 1);
if (opcode == WASM_OP_I31_GET_S
&& (i31_val & 0x40000000) /* bit 30 is 1 */)
/* set bit 31 to 1 */
i31_val |= 0x80000000;
PUSH_I32(i31_val);
HANDLE_OP_END();
}
case WASM_OP_REF_TEST:
case WASM_OP_REF_CAST:
case WASM_OP_REF_TEST_NULLABLE:
case WASM_OP_REF_CAST_NULLABLE:
{
int32 heap_type;
heap_type = (int32)read_uint32(frame_ip);
gc_obj = POP_REF();
if (!gc_obj) {
if (opcode == WASM_OP_REF_TEST
|| opcode == WASM_OP_REF_TEST_NULLABLE) {
if (opcode == WASM_OP_REF_TEST)
PUSH_I32(0);
else
PUSH_I32(1);
}
else if (opcode == WASM_OP_REF_CAST) {
wasm_set_exception(module, "cast failure");
goto got_exception;
}
else {
PUSH_REF(gc_obj);
}
}
else {
bool castable = false;
if (heap_type >= 0) {
WASMModule *wasm_module = module->module;
castable = wasm_obj_is_instance_of(
gc_obj, (uint32)heap_type,
wasm_module->types,
wasm_module->type_count);
}
else {
castable =
wasm_obj_is_type_of(gc_obj, heap_type);
}
if (opcode == WASM_OP_REF_TEST
|| opcode == WASM_OP_REF_TEST_NULLABLE) {
if (castable)
PUSH_I32(1);
else
PUSH_I32(0);
}
else if (!castable) {
wasm_set_exception(module, "cast failure");
goto got_exception;
}
else {
PUSH_REF(gc_obj);
}
}
HANDLE_OP_END();
}
case WASM_OP_BR_ON_CAST:
case WASM_OP_BR_ON_CAST_FAIL:
{
int32 heap_type, heap_type_dst;
uint8 castflags;
uint16 opnd_off_br;
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
castflags = *frame_ip++;
heap_type = (int32)read_uint32(frame_ip);
heap_type_dst = (int32)read_uint32(frame_ip);
opnd_off = GET_OFFSET();
opnd_off_br = GET_OFFSET();
gc_obj = GET_REF_FROM_ADDR(frame_lp + opnd_off);
PUT_REF_TO_ADDR(frame_lp + opnd_off_br, gc_obj);
if (!gc_obj) {
/*
* castflags should be 0~3:
* 0: (non-null, non-null)
* 1: (null, non-null)
* 2: (non-null, null)
* 3: (null, null)
*/
if (
/* op is BR_ON_CAST and dst reftype is nullable
*/
((opcode == WASM_OP_BR_ON_CAST)
&& ((castflags == 2) || (castflags == 3)))
/* op is BR_ON_CAST_FAIL and dst reftype is
non-nullable */
|| ((opcode == WASM_OP_BR_ON_CAST_FAIL)
&& ((castflags == 0)
|| (castflags == 1)))) {
CLEAR_FRAME_REF(opnd_off);
if (!wasm_is_reftype_i31ref(heap_type)) {
SET_FRAME_REF(opnd_off_br);
}
goto recover_br_info;
}
}
else {
bool castable = false;
if (heap_type_dst >= 0) {
WASMModule *wasm_module = module->module;
castable = wasm_obj_is_instance_of(
gc_obj, (uint32)heap_type_dst,
wasm_module->types,
wasm_module->type_count);
}
else {
castable =
wasm_obj_is_type_of(gc_obj, heap_type_dst);
}
if ((castable && (opcode == WASM_OP_BR_ON_CAST))
|| (!castable
&& (opcode == WASM_OP_BR_ON_CAST_FAIL))) {
CLEAR_FRAME_REF(opnd_off);
if (!wasm_is_reftype_i31ref(heap_type)) {
SET_FRAME_REF(opnd_off_br);
}
goto recover_br_info;
}
}
SKIP_BR_INFO();
(void)heap_type_dst;
HANDLE_OP_END();
}
case WASM_OP_ANY_CONVERT_EXTERN:
{
externref_obj = POP_REF();
if (externref_obj == NULL_REF)
PUSH_REF(NULL_REF);
else {
gc_obj = wasm_externref_obj_to_internal_obj(
externref_obj);
PUSH_REF(gc_obj);
}
HANDLE_OP_END();
}
case WASM_OP_EXTERN_CONVERT_ANY:
{
gc_obj = POP_REF();
if (gc_obj == NULL_REF)
PUSH_REF(NULL_REF);
else {
if (!(externref_obj =
wasm_internal_obj_to_externref_obj(
exec_env, gc_obj))) {
wasm_set_exception(
module, "create externref object failed");
goto got_exception;
}
PUSH_REF(externref_obj);
}
HANDLE_OP_END();
}
#if WASM_ENABLE_STRINGREF != 0
case WASM_OP_STRING_NEW_UTF8:
case WASM_OP_STRING_NEW_WTF16:
case WASM_OP_STRING_NEW_LOSSY_UTF8:
case WASM_OP_STRING_NEW_WTF8:
{
uint32 mem_idx, addr, bytes_length, offset = 0;
EncodingFlag flag = WTF8;
mem_idx = (uint32)read_uint32(frame_ip);
bytes_length = POP_I32();
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(bytes_length);
if (opcode == WASM_OP_STRING_NEW_WTF16) {
flag = WTF16;
}
else if (opcode == WASM_OP_STRING_NEW_UTF8) {
flag = UTF8;
}
else if (opcode == WASM_OP_STRING_NEW_LOSSY_UTF8) {
flag = LOSSY_UTF8;
}
else if (opcode == WASM_OP_STRING_NEW_WTF8) {
flag = WTF8;
}
str_obj = wasm_string_new_with_encoding(
maddr, bytes_length, flag);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!stringref_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
(void)mem_idx;
HANDLE_OP_END();
}
case WASM_OP_STRING_CONST:
{
WASMModule *wasm_module = module->module;
uint32 contents;
contents = (uint32)read_uint32(frame_ip);
str_obj = wasm_string_new_const(
(const char *)
wasm_module->string_literal_ptrs[contents],
wasm_module->string_literal_lengths[contents]);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!str_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
HANDLE_OP_END();
}
case WASM_OP_STRING_MEASURE_UTF8:
case WASM_OP_STRING_MEASURE_WTF8:
case WASM_OP_STRING_MEASURE_WTF16:
{
int32 target_bytes_length;
EncodingFlag flag = WTF8;
stringref_obj = POP_REF();
if (opcode == WASM_OP_STRING_MEASURE_WTF16) {
flag = WTF16;
}
else if (opcode == WASM_OP_STRING_MEASURE_UTF8) {
flag = UTF8;
}
else if (opcode == WASM_OP_STRING_MEASURE_WTF8) {
flag = LOSSY_UTF8;
}
target_bytes_length = wasm_string_measure(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj),
flag);
PUSH_I32(target_bytes_length);
HANDLE_OP_END();
}
case WASM_OP_STRING_ENCODE_UTF8:
case WASM_OP_STRING_ENCODE_WTF16:
case WASM_OP_STRING_ENCODE_LOSSY_UTF8:
case WASM_OP_STRING_ENCODE_WTF8:
{
uint32 mem_idx, addr;
int32 target_bytes_length;
WASMMemoryInstance *memory_inst;
EncodingFlag flag = WTF8;
mem_idx = (uint32)read_uint32(frame_ip);
addr = POP_I32();
stringref_obj = POP_REF();
str_obj = (WASMString)wasm_stringref_obj_get_value(
stringref_obj);
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)addr, 1))
shared_heap_addr_app_to_native((uint64)addr, maddr);
else
#endif
{
memory_inst = module->memories[mem_idx];
maddr = memory_inst->memory_data + addr;
}
if (opcode == WASM_OP_STRING_ENCODE_WTF16) {
flag = WTF16;
count = wasm_string_measure(str_obj, flag);
target_bytes_length = wasm_string_encode(
str_obj, 0, count, maddr, NULL, flag);
}
else {
if (opcode == WASM_OP_STRING_ENCODE_UTF8) {
flag = UTF8;
}
else if (opcode
== WASM_OP_STRING_ENCODE_LOSSY_UTF8) {
flag = LOSSY_UTF8;
}
else if (opcode == WASM_OP_STRING_ENCODE_WTF8) {
flag = WTF8;
}
count = wasm_string_measure(str_obj, flag);
target_bytes_length = wasm_string_encode(
str_obj, 0, count, maddr, NULL, flag);
if (target_bytes_length == -1) {
wasm_set_exception(
module, "isolated surrogate is seen");
goto got_exception;
}
}
if (target_bytes_length < 0) {
wasm_set_exception(module,
"stringref encode failed");
goto got_exception;
}
PUSH_I32(target_bytes_length);
HANDLE_OP_END();
}
case WASM_OP_STRING_CONCAT:
{
WASMStringrefObjectRef stringref_obj1, stringref_obj2;
stringref_obj2 = POP_REF();
stringref_obj1 = POP_REF();
str_obj = wasm_string_concat(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj1),
(WASMString)wasm_stringref_obj_get_value(
stringref_obj2));
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!stringref_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
HANDLE_OP_END();
}
case WASM_OP_STRING_EQ:
{
WASMStringrefObjectRef stringref_obj1, stringref_obj2;
int32 is_eq;
stringref_obj2 = POP_REF();
stringref_obj1 = POP_REF();
is_eq = wasm_string_eq(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj1),
(WASMString)wasm_stringref_obj_get_value(
stringref_obj2));
PUSH_I32(is_eq);
HANDLE_OP_END();
}
case WASM_OP_STRING_IS_USV_SEQUENCE:
{
int32 is_usv_sequence;
stringref_obj = POP_REF();
is_usv_sequence = wasm_string_is_usv_sequence(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj));
PUSH_I32(is_usv_sequence);
HANDLE_OP_END();
}
case WASM_OP_STRING_AS_WTF8:
{
stringref_obj = POP_REF();
str_obj = wasm_string_create_view(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj),
STRING_VIEW_WTF8);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringview_wtf8_obj =
wasm_stringview_wtf8_obj_new(exec_env, str_obj);
if (!stringview_wtf8_obj) {
wasm_set_exception(module,
"create stringview wtf8 failed");
goto got_exception;
}
PUSH_REF(stringview_wtf8_obj);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF8_ADVANCE:
{
uint32 next_pos, bytes, pos;
bytes = POP_I32();
pos = POP_I32();
stringview_wtf8_obj = POP_REF();
next_pos = wasm_string_advance(
(WASMString)wasm_stringview_wtf8_obj_get_value(
stringview_wtf8_obj),
pos, bytes, NULL);
PUSH_I32(next_pos);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF8_ENCODE_UTF8:
case WASM_OP_STRINGVIEW_WTF8_ENCODE_LOSSY_UTF8:
case WASM_OP_STRINGVIEW_WTF8_ENCODE_WTF8:
{
uint32 mem_idx, addr, pos, bytes, next_pos;
int32 bytes_written;
WASMMemoryInstance *memory_inst;
EncodingFlag flag = WTF8;
if (opcode == WASM_OP_STRINGVIEW_WTF8_ENCODE_UTF8) {
flag = UTF8;
}
else if (opcode
== WASM_OP_STRINGVIEW_WTF8_ENCODE_LOSSY_UTF8) {
flag = LOSSY_UTF8;
}
else if (opcode
== WASM_OP_STRINGVIEW_WTF8_ENCODE_WTF8) {
flag = WTF8;
}
mem_idx = (uint32)read_uint32(frame_ip);
bytes = POP_I32();
pos = POP_I32();
addr = POP_I32();
stringview_wtf8_obj = POP_REF();
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)addr, 1))
shared_heap_addr_app_to_native((uint64)addr, maddr);
else
#endif
{
memory_inst = module->memories[mem_idx];
maddr = memory_inst->memory_data + addr;
}
bytes_written = wasm_string_encode(
(WASMString)wasm_stringview_wtf8_obj_get_value(
stringview_wtf8_obj),
pos, bytes, maddr, &next_pos, flag);
if (bytes_written < 0) {
if (bytes_written == Isolated_Surrogate) {
wasm_set_exception(
module, "isolated surrogate is seen");
}
else {
wasm_set_exception(module, "encode failed");
}
goto got_exception;
}
PUSH_I32(next_pos);
PUSH_I32(bytes_written);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF8_SLICE:
{
uint32 start, end;
end = POP_I32();
start = POP_I32();
stringview_wtf8_obj = POP_REF();
str_obj = wasm_string_slice(
(WASMString)wasm_stringview_wtf8_obj_get_value(
stringview_wtf8_obj),
start, end, STRING_VIEW_WTF8);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!stringref_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
HANDLE_OP_END();
}
case WASM_OP_STRING_AS_WTF16:
{
stringref_obj = POP_REF();
str_obj = wasm_string_create_view(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj),
STRING_VIEW_WTF16);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringview_wtf16_obj =
wasm_stringview_wtf16_obj_new(exec_env, str_obj);
if (!stringview_wtf16_obj) {
wasm_set_exception(
module, "create stringview wtf16 failed");
goto got_exception;
}
PUSH_REF(stringview_wtf16_obj);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF16_LENGTH:
{
int32 code_units_length;
stringview_wtf16_obj = POP_REF();
code_units_length = wasm_string_wtf16_get_length(
(WASMString)wasm_stringview_wtf16_obj_get_value(
stringview_wtf16_obj));
PUSH_I32(code_units_length);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF16_GET_CODEUNIT:
{
int32 pos;
uint32 code_unit;
pos = POP_I32();
stringview_wtf16_obj = POP_REF();
code_unit = (uint32)wasm_string_get_wtf16_codeunit(
(WASMString)wasm_stringview_wtf16_obj_get_value(
stringview_wtf16_obj),
pos);
PUSH_I32(code_unit);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF16_ENCODE:
{
uint32 mem_idx, addr, pos, len, offset = 0;
int32 written_code_units = 0;
mem_idx = (uint32)read_uint32(frame_ip);
len = POP_I32();
pos = POP_I32();
addr = POP_I32();
stringview_wtf16_obj = POP_REF();
CHECK_MEMORY_OVERFLOW(len * sizeof(uint16));
/* check 2-byte alignment */
if (((uintptr_t)maddr & (((uintptr_t)1 << 2) - 1))
!= 0) {
wasm_set_exception(module,
"unaligned memory access");
goto got_exception;
}
written_code_units = wasm_string_encode(
(WASMString)wasm_stringview_wtf16_obj_get_value(
stringview_wtf16_obj),
pos, len, maddr, NULL, WTF16);
PUSH_I32(written_code_units);
(void)mem_idx;
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_WTF16_SLICE:
{
uint32 start, end;
end = POP_I32();
start = POP_I32();
stringview_wtf16_obj = POP_REF();
str_obj = wasm_string_slice(
(WASMString)wasm_stringview_wtf16_obj_get_value(
stringview_wtf16_obj),
start, end, STRING_VIEW_WTF16);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!stringref_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
HANDLE_OP_END();
}
case WASM_OP_STRING_AS_ITER:
{
stringref_obj = POP_REF();
str_obj = wasm_string_create_view(
(WASMString)wasm_stringref_obj_get_value(
stringref_obj),
STRING_VIEW_ITER);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringview_iter_obj =
wasm_stringview_iter_obj_new(exec_env, str_obj, 0);
if (!stringview_iter_obj) {
wasm_set_exception(module,
"create stringview iter failed");
goto got_exception;
}
PUSH_REF(stringview_iter_obj);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_ITER_NEXT:
{
uint32 code_point;
stringview_iter_obj = POP_REF();
code_point = wasm_string_next_codepoint(
(WASMString)wasm_stringview_iter_obj_get_value(
stringview_iter_obj),
wasm_stringview_iter_obj_get_pos(
stringview_iter_obj));
PUSH_I32(code_point);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_ITER_ADVANCE:
case WASM_OP_STRINGVIEW_ITER_REWIND:
{
uint32 code_points_count, code_points_consumed = 0,
cur_pos, next_pos = 0;
code_points_count = POP_I32();
stringview_iter_obj = POP_REF();
str_obj =
(WASMString)wasm_stringview_iter_obj_get_value(
stringview_iter_obj);
cur_pos = wasm_stringview_iter_obj_get_pos(
stringview_iter_obj);
if (opcode == WASM_OP_STRINGVIEW_ITER_ADVANCE) {
next_pos = wasm_string_advance(
str_obj, cur_pos, code_points_count,
&code_points_consumed);
}
else if (opcode == WASM_OP_STRINGVIEW_ITER_REWIND) {
next_pos = wasm_string_rewind(
str_obj, cur_pos, code_points_count,
&code_points_consumed);
}
wasm_stringview_iter_obj_update_pos(stringview_iter_obj,
next_pos);
PUSH_I32(code_points_consumed);
HANDLE_OP_END();
}
case WASM_OP_STRINGVIEW_ITER_SLICE:
{
uint32 code_points_count, cur_pos;
code_points_count = POP_I32();
stringview_iter_obj = POP_REF();
cur_pos = wasm_stringview_iter_obj_get_pos(
stringview_iter_obj);
str_obj = wasm_string_slice(
(WASMString)wasm_stringview_iter_obj_get_value(
stringview_iter_obj),
cur_pos, cur_pos + code_points_count,
STRING_VIEW_ITER);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!stringref_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
HANDLE_OP_END();
}
case WASM_OP_STRING_NEW_UTF8_ARRAY:
case WASM_OP_STRING_NEW_WTF16_ARRAY:
case WASM_OP_STRING_NEW_LOSSY_UTF8_ARRAY:
case WASM_OP_STRING_NEW_WTF8_ARRAY:
{
uint32 start, end, array_len;
EncodingFlag flag = WTF8;
WASMArrayType *array_type;
void *arr_start_addr;
end = POP_I32();
start = POP_I32();
array_obj = POP_REF();
array_type = (WASMArrayType *)wasm_obj_get_defined_type(
(WASMObjectRef)array_obj);
arr_start_addr =
wasm_array_obj_elem_addr(array_obj, start);
array_len = wasm_array_obj_length(array_obj);
if (start > end || end > array_len) {
wasm_set_exception(module,
"out of bounds array access");
goto got_exception;
}
if (opcode == WASM_OP_STRING_NEW_WTF16_ARRAY) {
if (array_type->elem_type != VALUE_TYPE_I16) {
wasm_set_exception(module,
"array type mismatch");
goto got_exception;
}
flag = WTF16;
}
else {
if (array_type->elem_type != VALUE_TYPE_I8) {
wasm_set_exception(module,
"array type mismatch");
goto got_exception;
}
if (opcode == WASM_OP_STRING_NEW_UTF8_ARRAY) {
flag = UTF8;
}
else if (opcode == WASM_OP_STRING_NEW_WTF8_ARRAY) {
flag = WTF8;
}
else if (opcode
== WASM_OP_STRING_NEW_LOSSY_UTF8_ARRAY) {
flag = LOSSY_UTF8;
}
}
str_obj = wasm_string_new_with_encoding(
arr_start_addr, (end - start), flag);
if (!str_obj) {
wasm_set_exception(module,
"create string object failed");
goto got_exception;
}
SYNC_ALL_TO_FRAME();
stringref_obj =
wasm_stringref_obj_new(exec_env, str_obj);
if (!stringref_obj) {
wasm_set_exception(module,
"create stringref failed");
goto got_exception;
}
PUSH_REF(stringref_obj);
HANDLE_OP_END();
}
case WASM_OP_STRING_ENCODE_UTF8_ARRAY:
case WASM_OP_STRING_ENCODE_WTF16_ARRAY:
case WASM_OP_STRING_ENCODE_LOSSY_UTF8_ARRAY:
case WASM_OP_STRING_ENCODE_WTF8_ARRAY:
{
uint32 start, array_len, count;
int32 bytes_written;
EncodingFlag flag = WTF8;
WASMArrayType *array_type;
void *arr_start_addr;
start = POP_I32();
array_obj = POP_REF();
stringref_obj = POP_REF();
str_obj = (WASMString)wasm_stringref_obj_get_value(
stringref_obj);
array_type = (WASMArrayType *)wasm_obj_get_defined_type(
(WASMObjectRef)array_obj);
arr_start_addr =
wasm_array_obj_elem_addr(array_obj, start);
array_len = wasm_array_obj_length(array_obj);
if (start > array_len) {
wasm_set_exception(module,
"out of bounds array access");
goto got_exception;
}
if (opcode == WASM_OP_STRING_ENCODE_WTF16_ARRAY) {
if (array_type->elem_type != VALUE_TYPE_I16) {
wasm_set_exception(module,
"array type mismatch");
goto got_exception;
}
flag = WTF16;
}
else {
if (array_type->elem_type != VALUE_TYPE_I8) {
wasm_set_exception(module,
"array type mismatch");
goto got_exception;
}
if (opcode == WASM_OP_STRING_ENCODE_UTF8_ARRAY) {
flag = UTF8;
}
else if (opcode
== WASM_OP_STRING_ENCODE_WTF8_ARRAY) {
flag = WTF8;
}
else if (
opcode
== WASM_OP_STRING_ENCODE_LOSSY_UTF8_ARRAY) {
flag = LOSSY_UTF8;
}
}
count = wasm_string_measure(str_obj, flag);
bytes_written = wasm_string_encode(
str_obj, 0, count, arr_start_addr, NULL, flag);
if (bytes_written < 0) {
if (bytes_written == Isolated_Surrogate) {
wasm_set_exception(
module, "isolated surrogate is seen");
}
else if (bytes_written == Insufficient_Space) {
wasm_set_exception(
module, "array space is insufficient");
}
else {
wasm_set_exception(module, "encode failed");
}
goto got_exception;
}
PUSH_I32(bytes_written);
HANDLE_OP_END();
}
#endif /* end of WASM_ENABLE_STRINGREF != 0 */
default:
{
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
}
}
#endif /* end of WASM_ENABLE_GC != 0 */
/* variable instructions */
HANDLE_OP(EXT_OP_SET_LOCAL_FAST)
HANDLE_OP(EXT_OP_TEE_LOCAL_FAST)
{
/* clang-format off */
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
local_offset = *frame_ip++;
#else
local_offset = *frame_ip;
frame_ip += 2;
#endif
/* clang-format on */
*(uint32 *)(frame_lp + local_offset) =
GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_SET_LOCAL_FAST_I64)
HANDLE_OP(EXT_OP_TEE_LOCAL_FAST_I64)
{
/* clang-format off */
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
local_offset = *frame_ip++;
#else
local_offset = *frame_ip;
frame_ip += 2;
#endif
/* clang-format on */
PUT_I64_TO_ADDR((uint32 *)(frame_lp + local_offset),
GET_OPERAND(uint64, I64, 0));
frame_ip += 2;
HANDLE_OP_END();
}
#if WASM_ENABLE_SIMD != 0
HANDLE_OP(EXT_OP_SET_LOCAL_FAST_V128)
HANDLE_OP(EXT_OP_TEE_LOCAL_FAST_V128)
{
/* clang-format off */
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
local_offset = *frame_ip++;
#else
local_offset = *frame_ip;
frame_ip += 2;
#endif
/* clang-format on */
PUT_V128_TO_ADDR((uint32 *)(frame_lp + local_offset),
GET_OPERAND_V128(0));
frame_ip += 2;
HANDLE_OP_END();
}
#endif
HANDLE_OP(WASM_OP_GET_GLOBAL)
{
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
addr_ret = GET_OFFSET();
/* clang-format off */
#if WASM_ENABLE_GC == 0
frame_lp[addr_ret] = *(uint32 *)global_addr;
#else
if (!wasm_is_type_reftype(global->type))
frame_lp[addr_ret] = *(uint32 *)global_addr;
else {
PUT_REF_TO_ADDR(frame_lp + addr_ret,
GET_REF_FROM_ADDR((uint32 *)global_addr));
if (!wasm_is_reftype_i31ref(global->type)) {
SET_FRAME_REF(addr_ret);
}
}
#endif
/* clang-format on */
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_GET_GLOBAL_64)
{
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
addr_ret = GET_OFFSET();
PUT_I64_TO_ADDR(frame_lp + addr_ret,
GET_I64_FROM_ADDR((uint32 *)global_addr));
HANDLE_OP_END();
}
#if WASM_ENABLE_SIMD != 0
HANDLE_OP(WASM_OP_GET_GLOBAL_V128)
{
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
addr_ret = GET_OFFSET();
PUT_V128_TO_ADDR(frame_lp + addr_ret,
GET_V128_FROM_ADDR((uint32 *)global_addr));
HANDLE_OP_END();
}
#endif
HANDLE_OP(WASM_OP_SET_GLOBAL)
{
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
addr1 = GET_OFFSET();
/* clang-format off */
#if WASM_ENABLE_GC == 0
*(int32 *)global_addr = frame_lp[addr1];
#else
if (!wasm_is_type_reftype(global->type))
*(int32 *)global_addr = frame_lp[addr1];
else {
PUT_REF_TO_ADDR((uint32 *)global_addr,
GET_REF_FROM_ADDR(frame_lp + addr1));
CLEAR_FRAME_REF(addr1);
}
#endif
/* clang-format on */
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_GLOBAL_AUX_STACK)
{
uint64 aux_stack_top;
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
/* TODO: Memory64 the data type depends on mem idx type */
aux_stack_top = (uint64)frame_lp[GET_OFFSET()];
if (aux_stack_top <= (uint64)exec_env->aux_stack_boundary) {
wasm_set_exception(module, "wasm auxiliary stack overflow");
goto got_exception;
}
if (aux_stack_top > (uint64)exec_env->aux_stack_bottom) {
wasm_set_exception(module,
"wasm auxiliary stack underflow");
goto got_exception;
}
*(int32 *)global_addr = (uint32)aux_stack_top;
#if WASM_ENABLE_MEMORY_PROFILING != 0
if (module->module->aux_stack_top_global_index != (uint32)-1) {
uint32 aux_stack_used =
(uint32)(module->module->aux_stack_bottom
- *(uint32 *)global_addr);
if (aux_stack_used > module->e->max_aux_stack_used)
module->e->max_aux_stack_used = aux_stack_used;
}
#endif
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_GLOBAL_64)
{
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
addr1 = GET_OFFSET();
PUT_I64_TO_ADDR((uint32 *)global_addr,
GET_I64_FROM_ADDR(frame_lp + addr1));
HANDLE_OP_END();
}
#if WASM_ENABLE_SIMDE != 0
HANDLE_OP(WASM_OP_SET_GLOBAL_V128)
{
global_idx = read_uint32(frame_ip);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
addr1 = GET_OFFSET();
PUT_V128_TO_ADDR((uint32 *)global_addr,
GET_V128_FROM_ADDR(frame_lp + addr1));
HANDLE_OP_END();
}
#endif
/* memory load instructions */
HANDLE_OP(WASM_OP_I32_LOAD)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(4);
frame_lp[addr_ret] = LOAD_I32(maddr);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(8);
PUT_I64_TO_ADDR(frame_lp + addr_ret, LOAD_I64(maddr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD8_S)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(1);
frame_lp[addr_ret] = sign_ext_8_32(*(int8 *)maddr);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD8_U)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(1);
frame_lp[addr_ret] = (uint32)(*(uint8 *)(maddr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD16_S)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(2);
frame_lp[addr_ret] = sign_ext_16_32(LOAD_I16(maddr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD16_U)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(2);
frame_lp[addr_ret] = (uint32)(LOAD_U16(maddr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD8_S)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(1);
PUT_I64_TO_ADDR(frame_lp + addr_ret,
sign_ext_8_64(*(int8 *)maddr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD8_U)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(1);
PUT_I64_TO_ADDR(frame_lp + addr_ret, (uint64)(*(uint8 *)maddr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD16_S)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(2);
PUT_I64_TO_ADDR(frame_lp + addr_ret,
sign_ext_16_64(LOAD_I16(maddr)));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD16_U)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(2);
PUT_I64_TO_ADDR(frame_lp + addr_ret, (uint64)(LOAD_U16(maddr)));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD32_S)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(4);
PUT_I64_TO_ADDR(frame_lp + addr_ret,
sign_ext_32_64(LOAD_I32(maddr)));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD32_U)
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = GET_OPERAND(uint32, I32, 0);
frame_ip += 2;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(4);
PUT_I64_TO_ADDR(frame_lp + addr_ret, (uint64)(LOAD_U32(maddr)));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_STORE)
{
uint32 offset, addr;
uint32 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint32, I32, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(4);
STORE_U32(maddr, sval);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_STORE8)
{
uint32 offset, addr;
uint32 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint32, I32, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(1);
STORE_U8(maddr, (uint8_t)sval);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_STORE16)
{
uint32 offset, addr;
uint32 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint32, I32, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(2);
STORE_U16(maddr, (uint16)sval);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_STORE)
{
uint32 offset, addr;
uint64 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint64, I64, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(8);
STORE_I64(maddr, sval);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_STORE8)
{
uint32 offset, addr;
uint64 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint64, I64, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(1);
*(uint8 *)maddr = (uint8)sval;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_STORE16)
{
uint32 offset, addr;
uint64 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint64, I64, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(2);
STORE_U16(maddr, (uint16)sval);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_STORE32)
{
uint32 offset, addr;
uint64 sval;
offset = read_uint32(frame_ip);
sval = GET_OPERAND(uint64, I64, 0);
addr = GET_OPERAND(uint32, I32, 2);
frame_ip += 4;
CHECK_MEMORY_OVERFLOW(4);
STORE_U32(maddr, (uint32)sval);
HANDLE_OP_END();
}
/* memory size and memory grow instructions */
HANDLE_OP(WASM_OP_MEMORY_SIZE)
{
uint32 reserved;
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = memory->cur_page_count;
(void)reserved;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_MEMORY_GROW)
{
uint32 reserved, delta,
prev_page_count = memory->cur_page_count;
addr1 = GET_OFFSET();
addr_ret = GET_OFFSET();
delta = (uint32)frame_lp[addr1];
/* TODO: multi-memory wasm_enlarge_memory_with_idx() */
if (!wasm_enlarge_memory(module, delta)) {
/* failed to memory.grow, return -1 */
frame_lp[addr_ret] = -1;
}
else {
/* success, return previous page count */
frame_lp[addr_ret] = prev_page_count;
/* update memory size, no need to update memory ptr as
it isn't changed in wasm_enlarge_memory */
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
linear_mem_size = GET_LINEAR_MEMORY_SIZE(memory);
#endif
}
(void)reserved;
HANDLE_OP_END();
}
/* constant instructions */
HANDLE_OP(WASM_OP_F64_CONST)
HANDLE_OP(WASM_OP_I64_CONST)
{
uint8 *orig_ip = frame_ip;
frame_ip += sizeof(uint64);
addr_ret = GET_OFFSET();
bh_memcpy_s(frame_lp + addr_ret, sizeof(uint64), orig_ip,
sizeof(uint64));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONST)
HANDLE_OP(WASM_OP_I32_CONST)
{
uint8 *orig_ip = frame_ip;
frame_ip += sizeof(uint32);
addr_ret = GET_OFFSET();
bh_memcpy_s(frame_lp + addr_ret, sizeof(uint32), orig_ip,
sizeof(uint32));
HANDLE_OP_END();
}
/* comparison instructions of i32 */
HANDLE_OP(WASM_OP_I32_EQZ)
{
DEF_OP_EQZ(int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_EQ)
{
DEF_OP_CMP(uint32, I32, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_NE)
{
DEF_OP_CMP(uint32, I32, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LT_S)
{
DEF_OP_CMP(int32, I32, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LT_U)
{
DEF_OP_CMP(uint32, I32, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GT_S)
{
DEF_OP_CMP(int32, I32, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GT_U)
{
DEF_OP_CMP(uint32, I32, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LE_S)
{
DEF_OP_CMP(int32, I32, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LE_U)
{
DEF_OP_CMP(uint32, I32, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GE_S)
{
DEF_OP_CMP(int32, I32, >=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GE_U)
{
DEF_OP_CMP(uint32, I32, >=);
HANDLE_OP_END();
}
/* comparison instructions of i64 */
HANDLE_OP(WASM_OP_I64_EQZ)
{
DEF_OP_EQZ(int64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EQ)
{
DEF_OP_CMP(uint64, I64, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_NE)
{
DEF_OP_CMP(uint64, I64, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LT_S)
{
DEF_OP_CMP(int64, I64, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LT_U)
{
DEF_OP_CMP(uint64, I64, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GT_S)
{
DEF_OP_CMP(int64, I64, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GT_U)
{
DEF_OP_CMP(uint64, I64, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LE_S)
{
DEF_OP_CMP(int64, I64, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LE_U)
{
DEF_OP_CMP(uint64, I64, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GE_S)
{
DEF_OP_CMP(int64, I64, >=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GE_U)
{
DEF_OP_CMP(uint64, I64, >=);
HANDLE_OP_END();
}
/* comparison instructions of f32 */
HANDLE_OP(WASM_OP_F32_EQ)
{
DEF_OP_CMP(float32, F32, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_NE)
{
DEF_OP_CMP(float32, F32, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_LT)
{
DEF_OP_CMP(float32, F32, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_GT)
{
DEF_OP_CMP(float32, F32, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_LE)
{
DEF_OP_CMP(float32, F32, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_GE)
{
DEF_OP_CMP(float32, F32, >=);
HANDLE_OP_END();
}
/* comparison instructions of f64 */
HANDLE_OP(WASM_OP_F64_EQ)
{
DEF_OP_CMP(float64, F64, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_NE)
{
DEF_OP_CMP(float64, F64, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_LT)
{
DEF_OP_CMP(float64, F64, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_GT)
{
DEF_OP_CMP(float64, F64, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_LE)
{
DEF_OP_CMP(float64, F64, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_GE)
{
DEF_OP_CMP(float64, F64, >=);
HANDLE_OP_END();
}
/* numeric instructions of i32 */
HANDLE_OP(WASM_OP_I32_CLZ)
{
DEF_OP_BIT_COUNT(uint32, I32, clz32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_CTZ)
{
DEF_OP_BIT_COUNT(uint32, I32, ctz32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_POPCNT)
{
DEF_OP_BIT_COUNT(uint32, I32, popcount32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_ADD)
{
DEF_OP_NUMERIC(uint32, uint32, I32, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SUB)
{
DEF_OP_NUMERIC(uint32, uint32, I32, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_MUL)
{
DEF_OP_NUMERIC(uint32, uint32, I32, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_DIV_S)
{
int32 a, b;
b = frame_lp[GET_OFFSET()];
a = frame_lp[GET_OFFSET()];
addr_ret = GET_OFFSET();
if (a == (int32)0x80000000 && b == -1) {
wasm_set_exception(module, "integer overflow");
goto got_exception;
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_DIV_U)
{
uint32 a, b;
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
b = (uint32)frame_lp[addr1];
a = (uint32)frame_lp[addr2];
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_REM_S)
{
int32 a, b;
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
b = frame_lp[addr1];
a = frame_lp[addr2];
if (a == (int32)0x80000000 && b == -1) {
frame_lp[addr_ret] = 0;
HANDLE_OP_END();
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_REM_U)
{
uint32 a, b;
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
b = (uint32)frame_lp[addr1];
a = (uint32)frame_lp[addr2];
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_AND)
{
DEF_OP_NUMERIC(uint32, uint32, I32, &);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_OR)
{
DEF_OP_NUMERIC(uint32, uint32, I32, |);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_XOR)
{
DEF_OP_NUMERIC(uint32, uint32, I32, ^);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SHL)
{
DEF_OP_NUMERIC2(uint32, uint32, I32, <<);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SHR_S)
{
DEF_OP_NUMERIC2(int32, uint32, I32, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SHR_U)
{
DEF_OP_NUMERIC2(uint32, uint32, I32, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_ROTL)
{
uint32 a, b;
b = (uint32)frame_lp[GET_OFFSET()];
a = (uint32)frame_lp[GET_OFFSET()];
frame_lp[GET_OFFSET()] = rotl32(a, b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_ROTR)
{
uint32 a, b;
b = (uint32)frame_lp[GET_OFFSET()];
a = (uint32)frame_lp[GET_OFFSET()];
frame_lp[GET_OFFSET()] = rotr32(a, b);
HANDLE_OP_END();
}
/* numeric instructions of i64 */
HANDLE_OP(WASM_OP_I64_CLZ)
{
DEF_OP_BIT_COUNT(uint64, I64, clz64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_CTZ)
{
DEF_OP_BIT_COUNT(uint64, I64, ctz64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_POPCNT)
{
DEF_OP_BIT_COUNT(uint64, I64, popcount64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_ADD)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SUB)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_MUL)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_DIV_S)
{
int64 a, b;
b = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
a = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
if (a == (int64)0x8000000000000000LL && b == -1) {
wasm_set_exception(module, "integer overflow");
goto got_exception;
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(), a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_DIV_U)
{
uint64 a, b;
b = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
a = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(), a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_REM_S)
{
int64 a, b;
b = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
a = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
if (a == (int64)0x8000000000000000LL && b == -1) {
*(int64 *)(frame_lp + GET_OFFSET()) = 0;
HANDLE_OP_END();
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(), a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_REM_U)
{
uint64 a, b;
b = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
a = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(), a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_AND)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, &);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_OR)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, |);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_XOR)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, ^);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SHL)
{
DEF_OP_NUMERIC2_64(uint64, uint64, I64, <<);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SHR_S)
{
DEF_OP_NUMERIC2_64(int64, uint64, I64, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SHR_U)
{
DEF_OP_NUMERIC2_64(uint64, uint64, I64, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_ROTL)
{
uint64 a, b;
b = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
a = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(), rotl64(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_ROTR)
{
uint64 a, b;
b = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
a = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(), rotr64(a, b));
HANDLE_OP_END();
}
/* numeric instructions of f32 */
HANDLE_OP(WASM_OP_F32_ABS)
{
DEF_OP_MATH(float32, F32, fabsf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_NEG)
{
uint32 u32 = frame_lp[GET_OFFSET()];
uint32 sign_bit = u32 & ((uint32)1 << 31);
addr_ret = GET_OFFSET();
if (sign_bit)
frame_lp[addr_ret] = u32 & ~((uint32)1 << 31);
else
frame_lp[addr_ret] = u32 | ((uint32)1 << 31);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CEIL)
{
DEF_OP_MATH(float32, F32, ceilf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_FLOOR)
{
DEF_OP_MATH(float32, F32, floorf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_TRUNC)
{
DEF_OP_MATH(float32, F32, truncf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_NEAREST)
{
DEF_OP_MATH(float32, F32, rintf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_SQRT)
{
DEF_OP_MATH(float32, F32, sqrtf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_ADD)
{
DEF_OP_NUMERIC(float32, float32, F32, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_SUB)
{
DEF_OP_NUMERIC(float32, float32, F32, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_MUL)
{
DEF_OP_NUMERIC(float32, float32, F32, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_DIV)
{
DEF_OP_NUMERIC(float32, float32, F32, /);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_MIN)
{
float32 a, b;
b = *(float32 *)(frame_lp + GET_OFFSET());
a = *(float32 *)(frame_lp + GET_OFFSET());
*(float32 *)(frame_lp + GET_OFFSET()) = f32_min(a, b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_MAX)
{
float32 a, b;
b = *(float32 *)(frame_lp + GET_OFFSET());
a = *(float32 *)(frame_lp + GET_OFFSET());
*(float32 *)(frame_lp + GET_OFFSET()) = f32_max(a, b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_COPYSIGN)
{
float32 a, b;
b = *(float32 *)(frame_lp + GET_OFFSET());
a = *(float32 *)(frame_lp + GET_OFFSET());
*(float32 *)(frame_lp + GET_OFFSET()) = local_copysignf(a, b);
HANDLE_OP_END();
}
/* numeric instructions of f64 */
HANDLE_OP(WASM_OP_F64_ABS)
{
DEF_OP_MATH(float64, F64, fabs);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_NEG)
{
uint64 u64 = GET_I64_FROM_ADDR(frame_lp + GET_OFFSET());
uint64 sign_bit = u64 & (((uint64)1) << 63);
if (sign_bit)
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(),
(u64 & ~(((uint64)1) << 63)));
else
PUT_I64_TO_ADDR(frame_lp + GET_OFFSET(),
(u64 | (((uint64)1) << 63)));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CEIL)
{
DEF_OP_MATH(float64, F64, ceil);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_FLOOR)
{
DEF_OP_MATH(float64, F64, floor);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_TRUNC)
{
DEF_OP_MATH(float64, F64, trunc);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_NEAREST)
{
DEF_OP_MATH(float64, F64, rint);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_SQRT)
{
DEF_OP_MATH(float64, F64, sqrt);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_ADD)
{
DEF_OP_NUMERIC_64(float64, float64, F64, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_SUB)
{
DEF_OP_NUMERIC_64(float64, float64, F64, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_MUL)
{
DEF_OP_NUMERIC_64(float64, float64, F64, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_DIV)
{
DEF_OP_NUMERIC_64(float64, float64, F64, /);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_MIN)
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(f64_min(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_MAX)
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(f64_max(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_COPYSIGN)
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(local_copysign(a, b));
HANDLE_OP_END();
}
/* conversions of i32 */
HANDLE_OP(WASM_OP_I32_WRAP_I64)
{
int32 value = (int32)(POP_I64() & 0xFFFFFFFFLL);
PUSH_I32(value);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_S_F32)
{
/* We don't use INT32_MIN/INT32_MAX/UINT32_MIN/UINT32_MAX,
since float/double values of ieee754 cannot precisely
represent all int32/uint32/int64/uint64 values, e.g.:
UINT32_MAX is 4294967295, but (float32)4294967295 is
4294967296.0f, but not 4294967295.0f. */
DEF_OP_TRUNC_F32(-2147483904.0f, 2147483648.0f, true, true);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_U_F32)
{
DEF_OP_TRUNC_F32(-1.0f, 4294967296.0f, true, false);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_S_F64)
{
DEF_OP_TRUNC_F64(-2147483649.0, 2147483648.0, true, true);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_U_F64)
{
DEF_OP_TRUNC_F64(-1.0, 4294967296.0, true, false);
HANDLE_OP_END();
}
/* conversions of i64 */
HANDLE_OP(WASM_OP_I64_EXTEND_S_I32)
{
DEF_OP_CONVERT(int64, I64, int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND_U_I32)
{
DEF_OP_CONVERT(int64, I64, uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_S_F32)
{
DEF_OP_TRUNC_F32(-9223373136366403584.0f,
9223372036854775808.0f, false, true);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_U_F32)
{
DEF_OP_TRUNC_F32(-1.0f, 18446744073709551616.0f, false, false);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_S_F64)
{
DEF_OP_TRUNC_F64(-9223372036854777856.0, 9223372036854775808.0,
false, true);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_U_F64)
{
DEF_OP_TRUNC_F64(-1.0, 18446744073709551616.0, false, false);
HANDLE_OP_END();
}
/* conversions of f32 */
HANDLE_OP(WASM_OP_F32_CONVERT_S_I32)
{
DEF_OP_CONVERT(float32, F32, int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONVERT_U_I32)
{
DEF_OP_CONVERT(float32, F32, uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONVERT_S_I64)
{
DEF_OP_CONVERT(float32, F32, int64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONVERT_U_I64)
{
DEF_OP_CONVERT(float32, F32, uint64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_DEMOTE_F64)
{
DEF_OP_CONVERT(float32, F32, float64, F64);
HANDLE_OP_END();
}
/* conversions of f64 */
HANDLE_OP(WASM_OP_F64_CONVERT_S_I32)
{
DEF_OP_CONVERT(float64, F64, int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONVERT_U_I32)
{
DEF_OP_CONVERT(float64, F64, uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONVERT_S_I64)
{
DEF_OP_CONVERT(float64, F64, int64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONVERT_U_I64)
{
DEF_OP_CONVERT(float64, F64, uint64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_PROMOTE_F32)
{
DEF_OP_CONVERT(float64, F64, float32, F32);
HANDLE_OP_END();
}
/* reinterpretations */
HANDLE_OP(WASM_OP_I32_REINTERPRET_F32)
HANDLE_OP(WASM_OP_F32_REINTERPRET_I32)
{
DEF_OP_REINTERPRET(uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_REINTERPRET_F64)
HANDLE_OP(WASM_OP_F64_REINTERPRET_I64)
{
DEF_OP_REINTERPRET(int64, I64);
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_COPY_STACK_TOP)
{
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
frame_lp[addr2] = frame_lp[addr1];
#if WASM_ENABLE_GC != 0
/* Ignore constants because they are not reference */
if (addr1 >= 0) {
if (*FRAME_REF(addr1)) {
CLEAR_FRAME_REF(addr1);
SET_FRAME_REF(addr2);
}
}
#endif
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_COPY_STACK_TOP_I64)
{
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
PUT_I64_TO_ADDR(frame_lp + addr2,
GET_I64_FROM_ADDR(frame_lp + addr1));
#if WASM_ENABLE_GC != 0
/* Ignore constants because they are not reference */
if (addr1 >= 0) {
if (*FRAME_REF(addr1)) {
CLEAR_FRAME_REF(addr1);
SET_FRAME_REF(addr2);
}
}
#endif
HANDLE_OP_END();
}
#if WASM_ENABLE_SIMD != 0
HANDLE_OP(EXT_OP_COPY_STACK_TOP_V128)
{
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
PUT_V128_TO_ADDR(frame_lp + addr2,
GET_V128_FROM_ADDR(frame_lp + addr1));
#if WASM_ENABLE_GC != 0
/* Ignore constants because they are not reference */
if (addr1 >= 0) {
if (*FRAME_REF(addr1)) {
CLEAR_FRAME_REF(addr1);
SET_FRAME_REF(addr2);
}
}
#endif
HANDLE_OP_END();
}
#endif
HANDLE_OP(EXT_OP_COPY_STACK_VALUES)
{
uint32 values_count, total_cell;
uint8 *cells;
int16 *src_offsets = NULL;
uint16 *dst_offsets = NULL;
/* read values_count */
values_count = read_uint32(frame_ip);
/* read total cell num */
total_cell = read_uint32(frame_ip);
/* cells */
cells = (uint8 *)frame_ip;
frame_ip += values_count * CELL_SIZE;
/* src offsets */
src_offsets = (int16 *)frame_ip;
frame_ip += values_count * sizeof(int16);
/* dst offsets */
dst_offsets = (uint16 *)frame_ip;
frame_ip += values_count * sizeof(uint16);
if (!copy_stack_values(module, frame_lp, values_count,
#if WASM_ENABLE_GC != 0
frame_ref,
#endif
total_cell, cells, src_offsets,
dst_offsets))
goto got_exception;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_LOCAL)
{
opcode = WASM_OP_SET_LOCAL;
goto handle_op_set_tee_local;
}
HANDLE_OP(WASM_OP_TEE_LOCAL)
{
opcode = WASM_OP_TEE_LOCAL;
handle_op_set_tee_local:
GET_LOCAL_INDEX_TYPE_AND_OFFSET();
addr1 = GET_OFFSET();
if (local_type == VALUE_TYPE_I32 || local_type == VALUE_TYPE_F32
#if WASM_ENABLE_REF_TYPES != 0 && WASM_ENABLE_GC == 0
|| local_type == VALUE_TYPE_FUNCREF
|| local_type == VALUE_TYPE_EXTERNREF
#endif
) {
*(int32 *)(frame_lp + local_offset) = frame_lp[addr1];
}
else if (local_type == VALUE_TYPE_I64
|| local_type == VALUE_TYPE_F64) {
PUT_I64_TO_ADDR((uint32 *)(frame_lp + local_offset),
GET_I64_FROM_ADDR(frame_lp + addr1));
}
#if WASM_ENABLE_GC != 0
else if (wasm_is_type_reftype(local_type)) {
PUT_REF_TO_ADDR((uint32 *)(frame_lp + local_offset),
GET_REF_FROM_ADDR(frame_lp + addr1));
if (opcode == WASM_OP_SET_LOCAL) {
CLEAR_FRAME_REF(addr1);
}
}
#endif
else {
wasm_set_exception(module, "invalid local type");
goto got_exception;
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_EXTEND8_S)
{
DEF_OP_CONVERT(int32, I32, int8, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_EXTEND16_S)
{
DEF_OP_CONVERT(int32, I32, int16, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND8_S)
{
DEF_OP_CONVERT(int64, I64, int8, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND16_S)
{
DEF_OP_CONVERT(int64, I64, int16, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND32_S)
{
DEF_OP_CONVERT(int64, I64, int32, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_MISC_PREFIX)
{
GET_OPCODE();
switch (opcode) {
case WASM_OP_I32_TRUNC_SAT_S_F32:
DEF_OP_TRUNC_SAT_F32(-2147483904.0f, 2147483648.0f,
true, true);
break;
case WASM_OP_I32_TRUNC_SAT_U_F32:
DEF_OP_TRUNC_SAT_F32(-1.0f, 4294967296.0f, true, false);
break;
case WASM_OP_I32_TRUNC_SAT_S_F64:
DEF_OP_TRUNC_SAT_F64(-2147483649.0, 2147483648.0, true,
true);
break;
case WASM_OP_I32_TRUNC_SAT_U_F64:
DEF_OP_TRUNC_SAT_F64(-1.0, 4294967296.0, true, false);
break;
case WASM_OP_I64_TRUNC_SAT_S_F32:
DEF_OP_TRUNC_SAT_F32(-9223373136366403584.0f,
9223372036854775808.0f, false,
true);
break;
case WASM_OP_I64_TRUNC_SAT_U_F32:
DEF_OP_TRUNC_SAT_F32(-1.0f, 18446744073709551616.0f,
false, false);
break;
case WASM_OP_I64_TRUNC_SAT_S_F64:
DEF_OP_TRUNC_SAT_F64(-9223372036854777856.0,
9223372036854775808.0, false,
true);
break;
case WASM_OP_I64_TRUNC_SAT_U_F64:
DEF_OP_TRUNC_SAT_F64(-1.0, 18446744073709551616.0,
false, false);
break;
#if WASM_ENABLE_BULK_MEMORY != 0
case WASM_OP_MEMORY_INIT:
{
uint32 addr, segment;
uint64 bytes, offset, seg_len;
uint8 *data;
segment = read_uint32(frame_ip);
bytes = (uint64)(uint32)POP_I32();
offset = (uint64)(uint32)POP_I32();
addr = POP_I32();
#if WASM_ENABLE_THREAD_MGR != 0
linear_mem_size = get_linear_mem_size();
#endif
#ifndef OS_ENABLE_HW_BOUND_CHECK
CHECK_BULK_MEMORY_OVERFLOW(addr, bytes, maddr);
#else
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)(uint32)addr,
bytes))
shared_heap_addr_app_to_native((uint64)(uint32)addr,
maddr);
else
#endif
{
if ((uint64)(uint32)addr + bytes > linear_mem_size)
goto out_of_bounds;
maddr = memory->memory_data + (uint32)addr;
}
#endif
if (bh_bitmap_get_bit(module->e->common.data_dropped,
segment)) {
seg_len = 0;
data = NULL;
}
else {
seg_len =
(uint64)module->module->data_segments[segment]
->data_length;
data = module->module->data_segments[segment]->data;
}
if (offset + bytes > seg_len)
goto out_of_bounds;
bh_memcpy_s(maddr, (uint32)(linear_mem_size - addr),
data + offset, (uint32)bytes);
break;
}
case WASM_OP_DATA_DROP:
{
uint32 segment;
segment = read_uint32(frame_ip);
bh_bitmap_set_bit(module->e->common.data_dropped,
segment);
break;
}
case WASM_OP_MEMORY_COPY:
{
uint32 dst, src, len;
uint8 *mdst, *msrc;
uint64 dlen;
len = POP_I32();
src = POP_I32();
dst = POP_I32();
#if WASM_ENABLE_THREAD_MGR != 0
linear_mem_size = get_linear_mem_size();
#endif
dlen = linear_mem_size - dst;
#ifndef OS_ENABLE_HW_BOUND_CHECK
CHECK_BULK_MEMORY_OVERFLOW(src, len, msrc);
CHECK_BULK_MEMORY_OVERFLOW(dst, len, mdst);
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)dst, len))
dlen = shared_heap_end_off - dst + 1;
#endif
#else /* else of OS_ENABLE_HW_BOUND_CHECK */
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)src, len))
shared_heap_addr_app_to_native((uint64)src, msrc);
else
#endif
{
if ((uint64)(uint32)src + len > linear_mem_size)
goto out_of_bounds;
msrc = memory->memory_data + (uint32)src;
}
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)dst, len)) {
shared_heap_addr_app_to_native((uint64)dst, mdst);
dlen = shared_heap_end_off - dst + 1;
}
else
#endif
{
if ((uint64)(uint32)dst + len > linear_mem_size)
goto out_of_bounds;
mdst = memory->memory_data + (uint32)dst;
}
#endif /* end of OS_ENABLE_HW_BOUND_CHECK */
/* allowing the destination and source to overlap */
bh_memmove_s(mdst, (uint32)dlen, msrc, len);
break;
}
case WASM_OP_MEMORY_FILL:
{
uint32 dst, len;
uint8 fill_val, *mdst;
len = POP_I32();
fill_val = POP_I32();
dst = POP_I32();
#if WASM_ENABLE_THREAD_MGR != 0
linear_mem_size = get_linear_mem_size();
#endif
#ifndef OS_ENABLE_HW_BOUND_CHECK
CHECK_BULK_MEMORY_OVERFLOW(dst, len, mdst);
#else
#if WASM_ENABLE_SHARED_HEAP != 0
if (app_addr_in_shared_heap((uint64)(uint32)dst, len))
shared_heap_addr_app_to_native((uint64)(uint32)dst,
mdst);
else
#endif
{
if ((uint64)(uint32)dst + len > linear_mem_size)
goto out_of_bounds;
mdst = memory->memory_data + (uint32)dst;
}
#endif
memset(mdst, fill_val, len);
break;
}
#endif /* WASM_ENABLE_BULK_MEMORY */
#if WASM_ENABLE_REF_TYPES != 0 || WASM_ENABLE_GC != 0
case WASM_OP_TABLE_INIT:
{
uint32 tbl_idx, elem_idx;
uint32 n, s, d;
WASMTableInstance *tbl_inst;
table_elem_type_t *table_elems;
InitializerExpression *tbl_seg_init_values = NULL,
*init_values;
uint64 i;
uint32 tbl_seg_len = 0;
elem_idx = read_uint32(frame_ip);
bh_assert(elem_idx < module->module->table_seg_count);
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
n = (uint32)POP_I32();
s = (uint32)POP_I32();
d = (uint32)POP_I32();
if (!bh_bitmap_get_bit(module->e->common.elem_dropped,
elem_idx)) {
/* table segment isn't dropped */
tbl_seg_init_values =
module->module->table_segments[elem_idx]
.init_values;
tbl_seg_len =
module->module->table_segments[elem_idx]
.value_count;
}
if (offset_len_out_of_bounds(s, n, tbl_seg_len)
|| offset_len_out_of_bounds(d, n,
tbl_inst->cur_size)) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
if (!n) {
break;
}
table_elems = tbl_inst->elems + d;
init_values = tbl_seg_init_values + s;
#if WASM_ENABLE_GC != 0
SYNC_ALL_TO_FRAME();
#endif
for (i = 0; i < n; i++) {
/* UINT32_MAX indicates that it is a null ref */
bh_assert(init_values[i].init_expr_type
== INIT_EXPR_TYPE_REFNULL_CONST
|| init_values[i].init_expr_type
== INIT_EXPR_TYPE_FUNCREF_CONST);
#if WASM_ENABLE_GC == 0
table_elems[i] =
(table_elem_type_t)init_values[i].u.ref_index;
#else
if (init_values[i].u.ref_index != UINT32_MAX) {
if (!(func_obj = wasm_create_func_obj(
module, init_values[i].u.ref_index,
true, NULL, 0))) {
goto got_exception;
}
table_elems[i] = func_obj;
}
else {
table_elems[i] = NULL_REF;
}
#endif
}
break;
}
case WASM_OP_ELEM_DROP:
{
uint32 elem_idx = read_uint32(frame_ip);
bh_assert(elem_idx < module->module->table_seg_count);
bh_bitmap_set_bit(module->e->common.elem_dropped,
elem_idx);
break;
}
case WASM_OP_TABLE_COPY:
{
uint32 src_tbl_idx, dst_tbl_idx;
uint32 n, s, d;
WASMTableInstance *src_tbl_inst, *dst_tbl_inst;
dst_tbl_idx = read_uint32(frame_ip);
bh_assert(dst_tbl_idx < module->table_count);
dst_tbl_inst = wasm_get_table_inst(module, dst_tbl_idx);
src_tbl_idx = read_uint32(frame_ip);
bh_assert(src_tbl_idx < module->table_count);
src_tbl_inst = wasm_get_table_inst(module, src_tbl_idx);
n = (uint32)POP_I32();
s = (uint32)POP_I32();
d = (uint32)POP_I32();
if (offset_len_out_of_bounds(d, n,
dst_tbl_inst->cur_size)
|| offset_len_out_of_bounds(
s, n, src_tbl_inst->cur_size)) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
/* if s >= d, copy from front to back */
/* if s < d, copy from back to front */
/* merge all together */
bh_memmove_s((uint8 *)dst_tbl_inst
+ offsetof(WASMTableInstance, elems)
+ d * sizeof(table_elem_type_t),
(uint32)((dst_tbl_inst->cur_size - d)
* sizeof(table_elem_type_t)),
(uint8 *)src_tbl_inst
+ offsetof(WASMTableInstance, elems)
+ s * sizeof(table_elem_type_t),
(uint32)(n * sizeof(table_elem_type_t)));
break;
}
case WASM_OP_TABLE_GROW:
{
uint32 tbl_idx, n, orig_tbl_sz;
WASMTableInstance *tbl_inst;
table_elem_type_t init_val;
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
orig_tbl_sz = tbl_inst->cur_size;
n = POP_I32();
#if WASM_ENABLE_GC == 0
init_val = POP_I32();
#else
init_val = POP_REF();
#endif
if (!wasm_enlarge_table(module, tbl_idx, n, init_val)) {
PUSH_I32(-1);
}
else {
PUSH_I32(orig_tbl_sz);
}
break;
}
case WASM_OP_TABLE_SIZE:
{
uint32 tbl_idx;
WASMTableInstance *tbl_inst;
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
PUSH_I32(tbl_inst->cur_size);
break;
}
case WASM_OP_TABLE_FILL:
{
uint32 tbl_idx, n, i;
WASMTableInstance *tbl_inst;
table_elem_type_t fill_val;
tbl_idx = read_uint32(frame_ip);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
n = POP_I32();
#if WASM_ENABLE_GC == 0
fill_val = POP_I32();
#else
fill_val = POP_REF();
#endif
i = POP_I32();
if (offset_len_out_of_bounds(i, n,
tbl_inst->cur_size)) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
for (; n != 0; i++, n--) {
tbl_inst->elems[i] = fill_val;
}
break;
}
#endif /* WASM_ENABLE_REF_TYPES */
default:
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
HANDLE_OP_END();
}
#if WASM_ENABLE_SHARED_MEMORY != 0
HANDLE_OP(WASM_OP_ATOMIC_PREFIX)
{
uint32 offset = 0, addr;
GET_OPCODE();
if (opcode != WASM_OP_ATOMIC_FENCE) {
offset = read_uint32(frame_ip);
}
switch (opcode) {
case WASM_OP_ATOMIC_NOTIFY:
{
uint32 notify_count, ret;
notify_count = POP_I32();
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
ret = wasm_runtime_atomic_notify(
(WASMModuleInstanceCommon *)module, maddr,
notify_count);
if (ret == (uint32)-1)
goto got_exception;
PUSH_I32(ret);
break;
}
case WASM_OP_ATOMIC_WAIT32:
{
uint64 timeout;
uint32 expect, ret;
timeout = POP_I64();
expect = POP_I32();
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
ret = wasm_runtime_atomic_wait(
(WASMModuleInstanceCommon *)module, maddr,
(uint64)expect, timeout, false);
if (ret == (uint32)-1)
goto got_exception;
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
PUSH_I32(ret);
break;
}
case WASM_OP_ATOMIC_WAIT64:
{
uint64 timeout, expect;
uint32 ret;
timeout = POP_I64();
expect = POP_I64();
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(8);
CHECK_ATOMIC_MEMORY_ACCESS(8);
ret = wasm_runtime_atomic_wait(
(WASMModuleInstanceCommon *)module, maddr, expect,
timeout, true);
if (ret == (uint32)-1)
goto got_exception;
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
PUSH_I32(ret);
break;
}
case WASM_OP_ATOMIC_FENCE:
{
os_atomic_thread_fence(os_memory_order_seq_cst);
break;
}
case WASM_OP_ATOMIC_I32_LOAD:
case WASM_OP_ATOMIC_I32_LOAD8_U:
case WASM_OP_ATOMIC_I32_LOAD16_U:
{
uint32 readv;
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I32_LOAD8_U) {
CHECK_MEMORY_OVERFLOW(1);
CHECK_ATOMIC_MEMORY_ACCESS(1);
shared_memory_lock(memory);
readv = (uint32)(*(uint8 *)maddr);
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_I32_LOAD16_U) {
CHECK_MEMORY_OVERFLOW(2);
CHECK_ATOMIC_MEMORY_ACCESS(2);
shared_memory_lock(memory);
readv = (uint32)LOAD_U16(maddr);
shared_memory_unlock(memory);
}
else {
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
shared_memory_lock(memory);
readv = LOAD_I32(maddr);
shared_memory_unlock(memory);
}
PUSH_I32(readv);
break;
}
case WASM_OP_ATOMIC_I64_LOAD:
case WASM_OP_ATOMIC_I64_LOAD8_U:
case WASM_OP_ATOMIC_I64_LOAD16_U:
case WASM_OP_ATOMIC_I64_LOAD32_U:
{
uint64 readv;
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I64_LOAD8_U) {
CHECK_MEMORY_OVERFLOW(1);
CHECK_ATOMIC_MEMORY_ACCESS(1);
shared_memory_lock(memory);
readv = (uint64)(*(uint8 *)maddr);
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_I64_LOAD16_U) {
CHECK_MEMORY_OVERFLOW(2);
CHECK_ATOMIC_MEMORY_ACCESS(2);
shared_memory_lock(memory);
readv = (uint64)LOAD_U16(maddr);
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_I64_LOAD32_U) {
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
shared_memory_lock(memory);
readv = (uint64)LOAD_U32(maddr);
shared_memory_unlock(memory);
}
else {
CHECK_MEMORY_OVERFLOW(8);
CHECK_ATOMIC_MEMORY_ACCESS(8);
shared_memory_lock(memory);
readv = LOAD_I64(maddr);
shared_memory_unlock(memory);
}
PUSH_I64(readv);
break;
}
case WASM_OP_ATOMIC_I32_STORE:
case WASM_OP_ATOMIC_I32_STORE8:
case WASM_OP_ATOMIC_I32_STORE16:
{
uint32 sval;
sval = (uint32)POP_I32();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I32_STORE8) {
CHECK_MEMORY_OVERFLOW(1);
CHECK_ATOMIC_MEMORY_ACCESS(1);
shared_memory_lock(memory);
*(uint8 *)maddr = (uint8)sval;
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_I32_STORE16) {
CHECK_MEMORY_OVERFLOW(2);
CHECK_ATOMIC_MEMORY_ACCESS(2);
shared_memory_lock(memory);
STORE_U16(maddr, (uint16)sval);
shared_memory_unlock(memory);
}
else {
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
shared_memory_lock(memory);
STORE_U32(maddr, sval);
shared_memory_unlock(memory);
}
break;
}
case WASM_OP_ATOMIC_I64_STORE:
case WASM_OP_ATOMIC_I64_STORE8:
case WASM_OP_ATOMIC_I64_STORE16:
case WASM_OP_ATOMIC_I64_STORE32:
{
uint64 sval;
sval = (uint64)POP_I64();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I64_STORE8) {
CHECK_MEMORY_OVERFLOW(1);
CHECK_ATOMIC_MEMORY_ACCESS(1);
shared_memory_lock(memory);
*(uint8 *)maddr = (uint8)sval;
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_I64_STORE16) {
CHECK_MEMORY_OVERFLOW(2);
CHECK_ATOMIC_MEMORY_ACCESS(2);
shared_memory_lock(memory);
STORE_U16(maddr, (uint16)sval);
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_I64_STORE32) {
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
shared_memory_lock(memory);
STORE_U32(maddr, (uint32)sval);
shared_memory_unlock(memory);
}
else {
CHECK_MEMORY_OVERFLOW(8);
CHECK_ATOMIC_MEMORY_ACCESS(8);
shared_memory_lock(memory);
STORE_I64(maddr, sval);
shared_memory_unlock(memory);
}
break;
}
case WASM_OP_ATOMIC_RMW_I32_CMPXCHG:
case WASM_OP_ATOMIC_RMW_I32_CMPXCHG8_U:
case WASM_OP_ATOMIC_RMW_I32_CMPXCHG16_U:
{
uint32 readv, sval, expect;
sval = POP_I32();
expect = POP_I32();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_RMW_I32_CMPXCHG8_U) {
CHECK_MEMORY_OVERFLOW(1);
CHECK_ATOMIC_MEMORY_ACCESS(1);
expect = (uint8)expect;
shared_memory_lock(memory);
readv = (uint32)(*(uint8 *)maddr);
if (readv == expect)
*(uint8 *)maddr = (uint8)(sval);
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_RMW_I32_CMPXCHG16_U) {
CHECK_MEMORY_OVERFLOW(2);
CHECK_ATOMIC_MEMORY_ACCESS(2);
expect = (uint16)expect;
shared_memory_lock(memory);
readv = (uint32)LOAD_U16(maddr);
if (readv == expect)
STORE_U16(maddr, (uint16)(sval));
shared_memory_unlock(memory);
}
else {
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
shared_memory_lock(memory);
readv = LOAD_I32(maddr);
if (readv == expect)
STORE_U32(maddr, sval);
shared_memory_unlock(memory);
}
PUSH_I32(readv);
break;
}
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG:
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG8_U:
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG16_U:
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG32_U:
{
uint64 readv, sval, expect;
sval = (uint64)POP_I64();
expect = (uint64)POP_I64();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_RMW_I64_CMPXCHG8_U) {
CHECK_MEMORY_OVERFLOW(1);
CHECK_ATOMIC_MEMORY_ACCESS(1);
expect = (uint8)expect;
shared_memory_lock(memory);
readv = (uint64)(*(uint8 *)maddr);
if (readv == expect)
*(uint8 *)maddr = (uint8)(sval);
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_RMW_I64_CMPXCHG16_U) {
CHECK_MEMORY_OVERFLOW(2);
CHECK_ATOMIC_MEMORY_ACCESS(2);
expect = (uint16)expect;
shared_memory_lock(memory);
readv = (uint64)LOAD_U16(maddr);
if (readv == expect)
STORE_U16(maddr, (uint16)(sval));
shared_memory_unlock(memory);
}
else if (opcode == WASM_OP_ATOMIC_RMW_I64_CMPXCHG32_U) {
CHECK_MEMORY_OVERFLOW(4);
CHECK_ATOMIC_MEMORY_ACCESS(4);
expect = (uint32)expect;
shared_memory_lock(memory);
readv = (uint64)LOAD_U32(maddr);
if (readv == expect)
STORE_U32(maddr, (uint32)(sval));
shared_memory_unlock(memory);
}
else {
CHECK_MEMORY_OVERFLOW(8);
CHECK_ATOMIC_MEMORY_ACCESS(8);
shared_memory_lock(memory);
readv = (uint64)LOAD_I64(maddr);
if (readv == expect)
STORE_I64(maddr, sval);
shared_memory_unlock(memory);
}
PUSH_I64(readv);
break;
}
DEF_ATOMIC_RMW_OPCODE(ADD, +);
DEF_ATOMIC_RMW_OPCODE(SUB, -);
DEF_ATOMIC_RMW_OPCODE(AND, &);
DEF_ATOMIC_RMW_OPCODE(OR, |);
DEF_ATOMIC_RMW_OPCODE(XOR, ^);
/* xchg, ignore the read value, and store the given
value: readv * 0 + sval */
DEF_ATOMIC_RMW_OPCODE(XCHG, *0 +);
}
HANDLE_OP_END();
}
#endif
HANDLE_OP(WASM_OP_IMPDEP)
{
frame = prev_frame;
frame_ip = frame->ip;
#if WASM_ENABLE_TAIL_CALL != 0 || WASM_ENABLE_GC != 0
is_return_call = false;
#endif
goto call_func_from_entry;
}
#if WASM_ENABLE_SIMDE != 0
#define SIMD_V128_TO_SIMDE_V128(v) \
({ \
bh_assert(sizeof(V128) == sizeof(simde_v128_t)); \
simde_v128_t result; \
bh_memcpy_s(&result, sizeof(simde_v128_t), &(v), sizeof(V128)); \
result; \
})
#define SIMDE_V128_TO_SIMD_V128(sv, v) \
do { \
bh_assert(sizeof(V128) == sizeof(simde_v128_t)); \
bh_memcpy_s(&(v), sizeof(V128), &(sv), sizeof(simde_v128_t)); \
} while (0)
HANDLE_OP(WASM_OP_SIMD_PREFIX)
{
GET_OPCODE();
switch (opcode) {
/* Memory */
case SIMD_v128_load:
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
addr = POP_I32();
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW(16);
PUT_V128_TO_ADDR(frame_lp + addr_ret, LOAD_V128(maddr));
break;
}
#define SIMD_LOAD_OP(simde_func) \
do { \
uint32 offset, addr; \
offset = read_uint32(frame_ip); \
addr = POP_I32(); \
addr_ret = GET_OFFSET(); \
CHECK_MEMORY_OVERFLOW(8); \
\
simde_v128_t simde_result = simde_func(maddr); \
\
V128 result; \
SIMDE_V128_TO_SIMD_V128(simde_result, result); \
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
\
} while (0)
case SIMD_v128_load8x8_s:
{
SIMD_LOAD_OP(simde_wasm_i16x8_load8x8);
break;
}
case SIMD_v128_load8x8_u:
{
SIMD_LOAD_OP(simde_wasm_u16x8_load8x8);
break;
}
case SIMD_v128_load16x4_s:
{
SIMD_LOAD_OP(simde_wasm_i32x4_load16x4);
break;
}
case SIMD_v128_load16x4_u:
{
SIMD_LOAD_OP(simde_wasm_u32x4_load16x4);
break;
}
case SIMD_v128_load32x2_s:
{
SIMD_LOAD_OP(simde_wasm_i64x2_load32x2);
break;
}
case SIMD_v128_load32x2_u:
{
SIMD_LOAD_OP(simde_wasm_u64x2_load32x2);
break;
}
#define SIMD_LOAD_SPLAT_OP(simde_func, width) \
do { \
uint32 offset, addr; \
offset = read_uint32(frame_ip); \
addr = POP_I32(); \
addr_ret = GET_OFFSET(); \
CHECK_MEMORY_OVERFLOW(width / 8); \
\
simde_v128_t simde_result = simde_func(maddr); \
\
V128 result; \
SIMDE_V128_TO_SIMD_V128(simde_result, result); \
\
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
} while (0)
case SIMD_v128_load8_splat:
{
SIMD_LOAD_SPLAT_OP(simde_wasm_v128_load8_splat, 8);
break;
}
case SIMD_v128_load16_splat:
{
SIMD_LOAD_SPLAT_OP(simde_wasm_v128_load16_splat, 16);
break;
}
case SIMD_v128_load32_splat:
{
SIMD_LOAD_SPLAT_OP(simde_wasm_v128_load32_splat, 32);
break;
}
case SIMD_v128_load64_splat:
{
SIMD_LOAD_SPLAT_OP(simde_wasm_v128_load64_splat, 64);
break;
}
case SIMD_v128_store:
{
uint32 offset, addr;
offset = read_uint32(frame_ip);
V128 data = POP_V128();
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(16);
STORE_V128(maddr, data);
break;
}
/* Basic */
case SIMD_v128_const:
{
uint8 *orig_ip = frame_ip;
frame_ip += sizeof(V128);
addr_ret = GET_OFFSET();
PUT_V128_TO_ADDR(frame_lp + addr_ret, *(V128 *)orig_ip);
break;
}
/* TODO: Add a faster SIMD implementation */
case SIMD_v8x16_shuffle:
{
V128 indices;
bh_memcpy_s(&indices, sizeof(V128), frame_ip,
sizeof(V128));
frame_ip += sizeof(V128);
V128 v2 = POP_V128();
V128 v1 = POP_V128();
addr_ret = GET_OFFSET();
V128 result;
for (int i = 0; i < 16; i++) {
uint8_t index = indices.i8x16[i];
if (index < 16) {
result.i8x16[i] = v1.i8x16[index];
}
else {
result.i8x16[i] = v2.i8x16[index - 16];
}
}
PUT_V128_TO_ADDR(frame_lp + addr_ret, result);
break;
}
case SIMD_v8x16_swizzle:
{
V128 v2 = POP_V128();
V128 v1 = POP_V128();
addr_ret = GET_OFFSET();
simde_v128_t simde_result = simde_wasm_i8x16_swizzle(
SIMD_V128_TO_SIMDE_V128(v1),
SIMD_V128_TO_SIMDE_V128(v2));
V128 result;
SIMDE_V128_TO_SIMD_V128(simde_result, result);
PUT_V128_TO_ADDR(frame_lp + addr_ret, result);
break;
}
/* Splat */
#define SIMD_SPLAT_OP(simde_func, pop_func, val_type) \
do { \
val_type val = pop_func(); \
addr_ret = GET_OFFSET(); \
\
simde_v128_t simde_result = simde_func(val); \
\
V128 result; \
SIMDE_V128_TO_SIMD_V128(simde_result, result); \
\
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
} while (0)
#define SIMD_SPLAT_OP_I32(simde_func) SIMD_SPLAT_OP(simde_func, POP_I32, uint32)
#define SIMD_SPLAT_OP_I64(simde_func) SIMD_SPLAT_OP(simde_func, POP_I64, uint64)
#define SIMD_SPLAT_OP_F32(simde_func) \
SIMD_SPLAT_OP(simde_func, POP_F32, float32)
#define SIMD_SPLAT_OP_F64(simde_func) \
SIMD_SPLAT_OP(simde_func, POP_F64, float64)
case SIMD_i8x16_splat:
{
uint32 val = POP_I32();
addr_ret = GET_OFFSET();
simde_v128_t simde_result = simde_wasm_i8x16_splat(val);
V128 result;
SIMDE_V128_TO_SIMD_V128(simde_result, result);
PUT_V128_TO_ADDR(frame_lp + addr_ret, result);
break;
}
case SIMD_i16x8_splat:
{
SIMD_SPLAT_OP_I32(simde_wasm_i16x8_splat);
break;
}
case SIMD_i32x4_splat:
{
SIMD_SPLAT_OP_I32(simde_wasm_i32x4_splat);
break;
}
case SIMD_i64x2_splat:
{
SIMD_SPLAT_OP_I64(simde_wasm_i64x2_splat);
break;
}
case SIMD_f32x4_splat:
{
SIMD_SPLAT_OP_F32(simde_wasm_f32x4_splat);
break;
}
case SIMD_f64x2_splat:
{
SIMD_SPLAT_OP_F64(simde_wasm_f64x2_splat);
break;
}
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
#define SIMD_LANE_HANDLE_UNALIGNED_ACCESS()
#else
#define SIMD_LANE_HANDLE_UNALIGNED_ACCESS() *frame_ip++;
#endif
#define SIMD_EXTRACT_LANE_OP(register, return_type, push_elem) \
do { \
uint8 lane = *frame_ip++; \
SIMD_LANE_HANDLE_UNALIGNED_ACCESS(); \
V128 v = POP_V128(); \
push_elem((return_type)(v.register[lane])); \
} while (0)
#define SIMD_REPLACE_LANE_OP(register, return_type, pop_elem) \
do { \
uint8 lane = *frame_ip++; \
SIMD_LANE_HANDLE_UNALIGNED_ACCESS(); \
return_type replacement = pop_elem(); \
V128 v = POP_V128(); \
v.register[lane] = replacement; \
addr_ret = GET_OFFSET(); \
PUT_V128_TO_ADDR(frame_lp + addr_ret, v); \
} while (0)
case SIMD_i8x16_extract_lane_s:
{
SIMD_EXTRACT_LANE_OP(i8x16, int8, PUSH_I32);
break;
}
case SIMD_i8x16_extract_lane_u:
{
SIMD_EXTRACT_LANE_OP(i8x16, uint8, PUSH_I32);
break;
}
case SIMD_i8x16_replace_lane:
{
SIMD_REPLACE_LANE_OP(i8x16, int8, POP_I32);
break;
}
case SIMD_i16x8_extract_lane_s:
{
SIMD_EXTRACT_LANE_OP(i16x8, int16, PUSH_I32);
break;
}
case SIMD_i16x8_extract_lane_u:
{
SIMD_EXTRACT_LANE_OP(i16x8, uint16, PUSH_I32);
break;
}
case SIMD_i16x8_replace_lane:
{
SIMD_REPLACE_LANE_OP(i16x8, int16, POP_I32);
break;
}
case SIMD_i32x4_extract_lane:
{
SIMD_EXTRACT_LANE_OP(i32x4, int32, PUSH_I32);
break;
}
case SIMD_i32x4_replace_lane:
{
SIMD_REPLACE_LANE_OP(i32x4, int32, POP_I32);
break;
}
case SIMD_i64x2_extract_lane:
{
SIMD_EXTRACT_LANE_OP(i64x2, int64, PUSH_I64);
break;
}
case SIMD_i64x2_replace_lane:
{
SIMD_REPLACE_LANE_OP(i64x2, int64, POP_I64);
break;
}
case SIMD_f32x4_extract_lane:
{
SIMD_EXTRACT_LANE_OP(f32x4, float32, PUSH_F32);
break;
}
case SIMD_f32x4_replace_lane:
{
SIMD_REPLACE_LANE_OP(f32x4, float32, POP_F32);
break;
}
case SIMD_f64x2_extract_lane:
{
SIMD_EXTRACT_LANE_OP(f64x2, float64, PUSH_F64);
break;
}
case SIMD_f64x2_replace_lane:
{
SIMD_REPLACE_LANE_OP(f64x2, float64, POP_F64);
break;
}
#define SIMD_DOUBLE_OP(simde_func) \
do { \
V128 v2 = POP_V128(); \
V128 v1 = POP_V128(); \
addr_ret = GET_OFFSET(); \
\
simde_v128_t simde_result = simde_func(SIMD_V128_TO_SIMDE_V128(v1), \
SIMD_V128_TO_SIMDE_V128(v2)); \
\
V128 result; \
SIMDE_V128_TO_SIMD_V128(simde_result, result); \
\
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
} while (0)
/* i8x16 comparison operations */
case SIMD_i8x16_eq:
{
V128 v2 = POP_V128();
V128 v1 = POP_V128();
addr_ret = GET_OFFSET();
simde_v128_t simde_result =
simde_wasm_i8x16_eq(SIMD_V128_TO_SIMDE_V128(v1),
SIMD_V128_TO_SIMDE_V128(v2));
V128 result;
SIMDE_V128_TO_SIMD_V128(simde_result, result);
PUT_V128_TO_ADDR(frame_lp + addr_ret, result);
break;
}
case SIMD_i8x16_ne:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_ne);
break;
}
case SIMD_i8x16_lt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_lt);
break;
}
case SIMD_i8x16_lt_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_lt);
break;
}
case SIMD_i8x16_gt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_gt);
break;
}
case SIMD_i8x16_gt_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_gt);
break;
}
case SIMD_i8x16_le_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_le);
break;
}
case SIMD_i8x16_le_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_le);
break;
}
case SIMD_i8x16_ge_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_ge);
break;
}
case SIMD_i8x16_ge_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_ge);
break;
}
/* i16x8 comparison operations */
case SIMD_i16x8_eq:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_eq);
break;
}
case SIMD_i16x8_ne:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_ne);
break;
}
case SIMD_i16x8_lt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_lt);
break;
}
case SIMD_i16x8_lt_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_lt);
break;
}
case SIMD_i16x8_gt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_gt);
break;
}
case SIMD_i16x8_gt_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_gt);
break;
}
case SIMD_i16x8_le_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_le);
break;
}
case SIMD_i16x8_le_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_le);
break;
}
case SIMD_i16x8_ge_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_ge);
break;
}
case SIMD_i16x8_ge_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_ge);
break;
}
/* i32x4 comparison operations */
case SIMD_i32x4_eq:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_eq);
break;
}
case SIMD_i32x4_ne:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_ne);
break;
}
case SIMD_i32x4_lt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_lt);
break;
}
case SIMD_i32x4_lt_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_lt);
break;
}
case SIMD_i32x4_gt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_gt);
break;
}
case SIMD_i32x4_gt_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_gt);
break;
}
case SIMD_i32x4_le_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_le);
break;
}
case SIMD_i32x4_le_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_le);
break;
}
case SIMD_i32x4_ge_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_ge);
break;
}
case SIMD_i32x4_ge_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_ge);
break;
}
/* f32x4 comparison operations */
case SIMD_f32x4_eq:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_eq);
break;
}
case SIMD_f32x4_ne:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_ne);
break;
}
case SIMD_f32x4_lt:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_lt);
break;
}
case SIMD_f32x4_gt:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_gt);
break;
}
case SIMD_f32x4_le:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_le);
break;
}
case SIMD_f32x4_ge:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_ge);
break;
}
/* f64x2 comparison operations */
case SIMD_f64x2_eq:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_eq);
break;
}
case SIMD_f64x2_ne:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_ne);
break;
}
case SIMD_f64x2_lt:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_lt);
break;
}
case SIMD_f64x2_gt:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_gt);
break;
}
case SIMD_f64x2_le:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_le);
break;
}
case SIMD_f64x2_ge:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_ge);
break;
}
/* v128 bitwise operations */
#define SIMD_V128_BITWISE_OP_COMMON(result_expr_0, result_expr_1) \
do { \
V128 result; \
result.i64x2[0] = (result_expr_0); \
result.i64x2[1] = (result_expr_1); \
addr_ret = GET_OFFSET(); \
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
} while (0)
case SIMD_v128_not:
{
V128 value = POP_V128();
SIMD_V128_BITWISE_OP_COMMON(~value.i64x2[0],
~value.i64x2[1]);
break;
}
case SIMD_v128_and:
{
V128 v2 = POP_V128();
V128 v1 = POP_V128();
SIMD_V128_BITWISE_OP_COMMON(v1.i64x2[0] & v2.i64x2[0],
v1.i64x2[1] & v2.i64x2[1]);
break;
}
case SIMD_v128_andnot:
{
V128 v2 = POP_V128();
V128 v1 = POP_V128();
SIMD_V128_BITWISE_OP_COMMON(
v1.i64x2[0] & (~v2.i64x2[0]),
v1.i64x2[1] & (~v2.i64x2[1]));
break;
}
case SIMD_v128_or:
{
V128 v2 = POP_V128();
V128 v1 = POP_V128();
SIMD_V128_BITWISE_OP_COMMON(v1.i64x2[0] | v2.i64x2[0],
v1.i64x2[1] | v2.i64x2[1]);
break;
}
case SIMD_v128_xor:
{
V128 v2 = POP_V128();
V128 v1 = POP_V128();
SIMD_V128_BITWISE_OP_COMMON(v1.i64x2[0] ^ v2.i64x2[0],
v1.i64x2[1] ^ v2.i64x2[1]);
break;
}
case SIMD_v128_bitselect:
{
V128 v1 = POP_V128();
V128 v2 = POP_V128();
V128 v3 = POP_V128();
addr_ret = GET_OFFSET();
simde_v128_t simde_result = simde_wasm_v128_bitselect(
SIMD_V128_TO_SIMDE_V128(v3),
SIMD_V128_TO_SIMDE_V128(v2),
SIMD_V128_TO_SIMDE_V128(v1));
V128 result;
SIMDE_V128_TO_SIMD_V128(simde_result, result);
PUT_V128_TO_ADDR(frame_lp + addr_ret, result);
break;
}
case SIMD_v128_any_true:
{
V128 value = POP_V128();
addr_ret = GET_OFFSET();
frame_lp[addr_ret] =
value.i64x2[0] != 0 || value.i64x2[1] != 0;
break;
}
#define SIMD_LOAD_LANE_COMMON(vec, register, lane, width) \
do { \
addr_ret = GET_OFFSET(); \
CHECK_MEMORY_OVERFLOW(width / 8); \
if (width == 64) { \
vec.register[lane] = GET_I64_FROM_ADDR(maddr); \
} \
else { \
vec.register[lane] = *(uint##width *)(maddr); \
} \
PUT_V128_TO_ADDR(frame_lp + addr_ret, vec); \
} while (0)
#define SIMD_LOAD_LANE_OP(register, width) \
do { \
uint32 offset, addr; \
offset = read_uint32(frame_ip); \
V128 vec = POP_V128(); \
addr = POP_I32(); \
int lane = *frame_ip++; \
SIMD_LANE_HANDLE_UNALIGNED_ACCESS(); \
SIMD_LOAD_LANE_COMMON(vec, register, lane, width); \
} while (0)
case SIMD_v128_load8_lane:
{
SIMD_LOAD_LANE_OP(i8x16, 8);
break;
}
case SIMD_v128_load16_lane:
{
SIMD_LOAD_LANE_OP(i16x8, 16);
break;
}
case SIMD_v128_load32_lane:
{
SIMD_LOAD_LANE_OP(i32x4, 32);
break;
}
case SIMD_v128_load64_lane:
{
SIMD_LOAD_LANE_OP(i64x2, 64);
break;
}
#define SIMD_STORE_LANE_OP(register, width) \
do { \
uint32 offset, addr; \
offset = read_uint32(frame_ip); \
V128 vec = POP_V128(); \
addr = POP_I32(); \
int lane = *frame_ip++; \
SIMD_LANE_HANDLE_UNALIGNED_ACCESS(); \
CHECK_MEMORY_OVERFLOW(width / 8); \
if (width == 64) { \
STORE_I64(maddr, vec.register[lane]); \
} \
else { \
*(uint##width *)(maddr) = vec.register[lane]; \
} \
} while (0)
case SIMD_v128_store8_lane:
{
SIMD_STORE_LANE_OP(i8x16, 8);
break;
}
case SIMD_v128_store16_lane:
{
SIMD_STORE_LANE_OP(i16x8, 16);
break;
}
case SIMD_v128_store32_lane:
{
SIMD_STORE_LANE_OP(i32x4, 32);
break;
}
case SIMD_v128_store64_lane:
{
SIMD_STORE_LANE_OP(i64x2, 64);
break;
}
#define SIMD_LOAD_ZERO_OP(register, width) \
do { \
uint32 offset, addr; \
offset = read_uint32(frame_ip); \
addr = POP_I32(); \
int32 lane = 0; \
V128 vec = { 0 }; \
SIMD_LOAD_LANE_COMMON(vec, register, lane, width); \
} while (0)
case SIMD_v128_load32_zero:
{
SIMD_LOAD_ZERO_OP(i32x4, 32);
break;
}
case SIMD_v128_load64_zero:
{
SIMD_LOAD_ZERO_OP(i64x2, 64);
break;
}
#define SIMD_SINGLE_OP(simde_func) \
do { \
V128 v1 = POP_V128(); \
addr_ret = GET_OFFSET(); \
\
simde_v128_t simde_result = simde_func(SIMD_V128_TO_SIMDE_V128(v1)); \
\
V128 result; \
SIMDE_V128_TO_SIMD_V128(simde_result, result); \
\
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
} while (0)
/* Float conversion */
case SIMD_f32x4_demote_f64x2_zero:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_demote_f64x2_zero);
break;
}
case SIMD_f64x2_promote_low_f32x4_zero:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_promote_low_f32x4);
break;
}
/* i8x16 operations */
case SIMD_i8x16_abs:
{
SIMD_SINGLE_OP(simde_wasm_i8x16_abs);
break;
}
case SIMD_i8x16_neg:
{
SIMD_SINGLE_OP(simde_wasm_i8x16_neg);
break;
}
case SIMD_i8x16_popcnt:
{
SIMD_SINGLE_OP(simde_wasm_i8x16_popcnt);
break;
}
case SIMD_i8x16_all_true:
{
V128 v1 = POP_V128();
bool result = simde_wasm_i8x16_all_true(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i8x16_bitmask:
{
V128 v1 = POP_V128();
uint32_t result = simde_wasm_i8x16_bitmask(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i8x16_narrow_i16x8_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_narrow_i16x8);
break;
}
case SIMD_i8x16_narrow_i16x8_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_narrow_i16x8);
break;
}
case SIMD_f32x4_ceil:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_ceil);
break;
}
case SIMD_f32x4_floor:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_floor);
break;
}
case SIMD_f32x4_trunc:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_trunc);
break;
}
case SIMD_f32x4_nearest:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_nearest);
break;
}
#define SIMD_LANE_SHIFT(simde_func) \
do { \
int32 count = POP_I32(); \
V128 v1 = POP_V128(); \
addr_ret = GET_OFFSET(); \
\
simde_v128_t simde_result = \
simde_func(SIMD_V128_TO_SIMDE_V128(v1), count); \
\
V128 result; \
SIMDE_V128_TO_SIMD_V128(simde_result, result); \
\
PUT_V128_TO_ADDR(frame_lp + addr_ret, result); \
} while (0)
case SIMD_i8x16_shl:
{
SIMD_LANE_SHIFT(simde_wasm_i8x16_shl);
break;
}
case SIMD_i8x16_shr_s:
{
SIMD_LANE_SHIFT(simde_wasm_i8x16_shr);
break;
}
case SIMD_i8x16_shr_u:
{
SIMD_LANE_SHIFT(simde_wasm_u8x16_shr);
break;
}
case SIMD_i8x16_add:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_add);
break;
}
case SIMD_i8x16_add_sat_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_add_sat);
break;
}
case SIMD_i8x16_add_sat_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_add_sat);
break;
}
case SIMD_i8x16_sub:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_sub);
break;
}
case SIMD_i8x16_sub_sat_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_sub_sat);
break;
}
case SIMD_i8x16_sub_sat_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_sub_sat);
break;
}
case SIMD_f64x2_ceil:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_ceil);
break;
}
case SIMD_f64x2_floor:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_floor);
break;
}
case SIMD_i8x16_min_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_min);
break;
}
case SIMD_i8x16_min_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_min);
break;
}
case SIMD_i8x16_max_s:
{
SIMD_DOUBLE_OP(simde_wasm_i8x16_max);
break;
}
case SIMD_i8x16_max_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_max);
break;
}
case SIMD_f64x2_trunc:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_trunc);
break;
}
case SIMD_i8x16_avgr_u:
{
SIMD_DOUBLE_OP(simde_wasm_u8x16_avgr);
break;
}
case SIMD_i16x8_extadd_pairwise_i8x16_s:
{
SIMD_SINGLE_OP(simde_wasm_i16x8_extadd_pairwise_i8x16);
break;
}
case SIMD_i16x8_extadd_pairwise_i8x16_u:
{
SIMD_SINGLE_OP(simde_wasm_u16x8_extadd_pairwise_u8x16);
break;
}
case SIMD_i32x4_extadd_pairwise_i16x8_s:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_extadd_pairwise_i16x8);
break;
}
case SIMD_i32x4_extadd_pairwise_i16x8_u:
{
SIMD_SINGLE_OP(simde_wasm_u32x4_extadd_pairwise_u16x8);
break;
}
/* i16x8 operations */
case SIMD_i16x8_abs:
{
SIMD_SINGLE_OP(simde_wasm_i16x8_abs);
break;
}
case SIMD_i16x8_neg:
{
SIMD_SINGLE_OP(simde_wasm_i16x8_neg);
break;
}
case SIMD_i16x8_q15mulr_sat_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_q15mulr_sat);
break;
}
case SIMD_i16x8_all_true:
{
V128 v1 = POP_V128();
bool result = simde_wasm_i16x8_all_true(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i16x8_bitmask:
{
V128 v1 = POP_V128();
uint32_t result = simde_wasm_i16x8_bitmask(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i16x8_narrow_i32x4_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_narrow_i32x4);
break;
}
case SIMD_i16x8_narrow_i32x4_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_narrow_i32x4);
break;
}
case SIMD_i16x8_extend_low_i8x16_s:
{
SIMD_SINGLE_OP(simde_wasm_i16x8_extend_low_i8x16);
break;
}
case SIMD_i16x8_extend_high_i8x16_s:
{
SIMD_SINGLE_OP(simde_wasm_i16x8_extend_high_i8x16);
break;
}
case SIMD_i16x8_extend_low_i8x16_u:
{
SIMD_SINGLE_OP(simde_wasm_u16x8_extend_low_u8x16);
break;
}
case SIMD_i16x8_extend_high_i8x16_u:
{
SIMD_SINGLE_OP(simde_wasm_u16x8_extend_high_u8x16);
break;
}
case SIMD_i16x8_shl:
{
SIMD_LANE_SHIFT(simde_wasm_i16x8_shl);
break;
}
case SIMD_i16x8_shr_s:
{
SIMD_LANE_SHIFT(simde_wasm_i16x8_shr);
break;
}
case SIMD_i16x8_shr_u:
{
SIMD_LANE_SHIFT(simde_wasm_u16x8_shr);
break;
}
case SIMD_i16x8_add:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_add);
break;
}
case SIMD_i16x8_add_sat_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_add_sat);
break;
}
case SIMD_i16x8_add_sat_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_add_sat);
break;
}
case SIMD_i16x8_sub:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_sub);
break;
}
case SIMD_i16x8_sub_sat_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_sub_sat);
break;
}
case SIMD_i16x8_sub_sat_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_sub_sat);
break;
}
case SIMD_f64x2_nearest:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_nearest);
break;
}
case SIMD_i16x8_mul:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_mul);
break;
}
case SIMD_i16x8_min_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_min);
break;
}
case SIMD_i16x8_min_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_min);
break;
}
case SIMD_i16x8_max_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_max);
break;
}
case SIMD_i16x8_max_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_max);
break;
}
case SIMD_i16x8_avgr_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_avgr);
break;
}
case SIMD_i16x8_extmul_low_i8x16_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_extmul_low_i8x16);
break;
}
case SIMD_i16x8_extmul_high_i8x16_s:
{
SIMD_DOUBLE_OP(simde_wasm_i16x8_extmul_high_i8x16);
break;
}
case SIMD_i16x8_extmul_low_i8x16_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_extmul_low_u8x16);
break;
}
case SIMD_i16x8_extmul_high_i8x16_u:
{
SIMD_DOUBLE_OP(simde_wasm_u16x8_extmul_high_u8x16);
break;
}
/* i32x4 operations */
case SIMD_i32x4_abs:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_abs);
break;
}
case SIMD_i32x4_neg:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_neg);
break;
}
case SIMD_i32x4_all_true:
{
V128 v1 = POP_V128();
bool result = simde_wasm_i32x4_all_true(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i32x4_bitmask:
{
V128 v1 = POP_V128();
uint32_t result = simde_wasm_i32x4_bitmask(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i32x4_extend_low_i16x8_s:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_extend_low_i16x8);
break;
}
case SIMD_i32x4_extend_high_i16x8_s:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_extend_high_i16x8);
break;
}
case SIMD_i32x4_extend_low_i16x8_u:
{
SIMD_SINGLE_OP(simde_wasm_u32x4_extend_low_u16x8);
break;
}
case SIMD_i32x4_extend_high_i16x8_u:
{
SIMD_SINGLE_OP(simde_wasm_u32x4_extend_high_u16x8);
break;
}
case SIMD_i32x4_shl:
{
SIMD_LANE_SHIFT(simde_wasm_i32x4_shl);
break;
}
case SIMD_i32x4_shr_s:
{
SIMD_LANE_SHIFT(simde_wasm_i32x4_shr);
break;
}
case SIMD_i32x4_shr_u:
{
SIMD_LANE_SHIFT(simde_wasm_u32x4_shr);
break;
}
case SIMD_i32x4_add:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_add);
break;
}
case SIMD_i32x4_sub:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_sub);
break;
}
case SIMD_i32x4_mul:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_mul);
break;
}
case SIMD_i32x4_min_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_min);
break;
}
case SIMD_i32x4_min_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_min);
break;
}
case SIMD_i32x4_max_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_max);
break;
}
case SIMD_i32x4_max_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_max);
break;
}
case SIMD_i32x4_dot_i16x8_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_dot_i16x8);
break;
}
case SIMD_i32x4_extmul_low_i16x8_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_extmul_low_i16x8);
break;
}
case SIMD_i32x4_extmul_high_i16x8_s:
{
SIMD_DOUBLE_OP(simde_wasm_i32x4_extmul_high_i16x8);
break;
}
case SIMD_i32x4_extmul_low_i16x8_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_extmul_low_u16x8);
break;
}
case SIMD_i32x4_extmul_high_i16x8_u:
{
SIMD_DOUBLE_OP(simde_wasm_u32x4_extmul_high_u16x8);
break;
}
/* i64x2 operations */
case SIMD_i64x2_abs:
{
SIMD_SINGLE_OP(simde_wasm_i64x2_abs);
break;
}
case SIMD_i64x2_neg:
{
SIMD_SINGLE_OP(simde_wasm_i64x2_neg);
break;
}
case SIMD_i64x2_all_true:
{
V128 v1 = POP_V128();
bool result = simde_wasm_i64x2_all_true(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i64x2_bitmask:
{
V128 v1 = POP_V128();
uint32_t result = simde_wasm_i64x2_bitmask(
SIMD_V128_TO_SIMDE_V128(v1));
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = result;
break;
}
case SIMD_i64x2_extend_low_i32x4_s:
{
SIMD_SINGLE_OP(simde_wasm_i64x2_extend_low_i32x4);
break;
}
case SIMD_i64x2_extend_high_i32x4_s:
{
SIMD_SINGLE_OP(simde_wasm_i64x2_extend_high_i32x4);
break;
}
case SIMD_i64x2_extend_low_i32x4_u:
{
SIMD_SINGLE_OP(simde_wasm_u64x2_extend_low_u32x4);
break;
}
case SIMD_i64x2_extend_high_i32x4_u:
{
SIMD_SINGLE_OP(simde_wasm_u64x2_extend_high_u32x4);
break;
}
case SIMD_i64x2_shl:
{
SIMD_LANE_SHIFT(simde_wasm_i64x2_shl);
break;
}
case SIMD_i64x2_shr_s:
{
SIMD_LANE_SHIFT(simde_wasm_i64x2_shr);
break;
}
case SIMD_i64x2_shr_u:
{
SIMD_LANE_SHIFT(simde_wasm_u64x2_shr);
break;
}
case SIMD_i64x2_add:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_add);
break;
}
case SIMD_i64x2_sub:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_sub);
break;
}
case SIMD_i64x2_mul:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_mul);
break;
}
case SIMD_i64x2_eq:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_eq);
break;
}
case SIMD_i64x2_ne:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_ne);
break;
}
case SIMD_i64x2_lt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_lt);
break;
}
case SIMD_i64x2_gt_s:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_gt);
break;
}
case SIMD_i64x2_le_s:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_le);
break;
}
case SIMD_i64x2_ge_s:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_ge);
break;
}
case SIMD_i64x2_extmul_low_i32x4_s:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_extmul_low_i32x4);
break;
}
case SIMD_i64x2_extmul_high_i32x4_s:
{
SIMD_DOUBLE_OP(simde_wasm_i64x2_extmul_high_i32x4);
break;
}
case SIMD_i64x2_extmul_low_i32x4_u:
{
SIMD_DOUBLE_OP(simde_wasm_u64x2_extmul_low_u32x4);
break;
}
case SIMD_i64x2_extmul_high_i32x4_u:
{
SIMD_DOUBLE_OP(simde_wasm_u64x2_extmul_high_u32x4);
break;
}
/* f32x4 opertions */
case SIMD_f32x4_abs:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_abs);
break;
}
case SIMD_f32x4_neg:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_neg);
break;
}
case SIMD_f32x4_sqrt:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_sqrt);
break;
}
case SIMD_f32x4_add:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_add);
break;
}
case SIMD_f32x4_sub:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_sub);
break;
}
case SIMD_f32x4_mul:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_mul);
break;
}
case SIMD_f32x4_div:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_div);
break;
}
case SIMD_f32x4_min:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_min);
break;
}
case SIMD_f32x4_max:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_max);
break;
}
case SIMD_f32x4_pmin:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_pmin);
break;
}
case SIMD_f32x4_pmax:
{
SIMD_DOUBLE_OP(simde_wasm_f32x4_pmax);
break;
}
/* f64x2 operations */
case SIMD_f64x2_abs:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_abs);
break;
}
case SIMD_f64x2_neg:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_neg);
break;
}
case SIMD_f64x2_sqrt:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_sqrt);
break;
}
case SIMD_f64x2_add:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_add);
break;
}
case SIMD_f64x2_sub:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_sub);
break;
}
case SIMD_f64x2_mul:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_mul);
break;
}
case SIMD_f64x2_div:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_div);
break;
}
case SIMD_f64x2_min:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_min);
break;
}
case SIMD_f64x2_max:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_max);
break;
}
case SIMD_f64x2_pmin:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_pmin);
break;
}
case SIMD_f64x2_pmax:
{
SIMD_DOUBLE_OP(simde_wasm_f64x2_pmax);
break;
}
/* Conversion operations */
case SIMD_i32x4_trunc_sat_f32x4_s:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_trunc_sat_f32x4);
break;
}
case SIMD_i32x4_trunc_sat_f32x4_u:
{
SIMD_SINGLE_OP(simde_wasm_u32x4_trunc_sat_f32x4);
break;
}
case SIMD_f32x4_convert_i32x4_s:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_convert_i32x4);
break;
}
case SIMD_f32x4_convert_i32x4_u:
{
SIMD_SINGLE_OP(simde_wasm_f32x4_convert_u32x4);
break;
}
case SIMD_i32x4_trunc_sat_f64x2_s_zero:
{
SIMD_SINGLE_OP(simde_wasm_i32x4_trunc_sat_f64x2_zero);
break;
}
case SIMD_i32x4_trunc_sat_f64x2_u_zero:
{
SIMD_SINGLE_OP(simde_wasm_u32x4_trunc_sat_f64x2_zero);
break;
}
case SIMD_f64x2_convert_low_i32x4_s:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_convert_low_i32x4);
break;
}
case SIMD_f64x2_convert_low_i32x4_u:
{
SIMD_SINGLE_OP(simde_wasm_f64x2_convert_low_u32x4);
break;
}
default:
wasm_set_exception(module, "unsupported SIMD opcode");
}
HANDLE_OP_END();
}
#endif
HANDLE_OP(WASM_OP_CALL)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
fidx = read_uint32(frame_ip);
#if WASM_ENABLE_MULTI_MODULE != 0
if (fidx >= module->e->function_count) {
wasm_set_exception(module, "unknown function");
goto got_exception;
}
#endif
cur_func = module->e->functions + fidx;
goto call_func_from_interp;
}
#if WASM_ENABLE_TAIL_CALL != 0
HANDLE_OP(WASM_OP_RETURN_CALL)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
fidx = read_uint32(frame_ip);
#if WASM_ENABLE_MULTI_MODULE != 0
if (fidx >= module->e->function_count) {
wasm_set_exception(module, "unknown function");
goto got_exception;
}
#endif
cur_func = module->e->functions + fidx;
goto call_func_from_return_call;
}
#endif /* WASM_ENABLE_TAIL_CALL */
#if WASM_ENABLE_LABELS_AS_VALUES == 0
default:
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES != 0
HANDLE_OP(WASM_OP_UNUSED_0x0a)
#if WASM_ENABLE_TAIL_CALL == 0
HANDLE_OP(WASM_OP_RETURN_CALL)
HANDLE_OP(WASM_OP_RETURN_CALL_INDIRECT)
#endif
#if WASM_ENABLE_SHARED_MEMORY == 0
HANDLE_OP(WASM_OP_ATOMIC_PREFIX)
#endif
#if WASM_ENABLE_REF_TYPES == 0 && WASM_ENABLE_GC == 0
HANDLE_OP(WASM_OP_TABLE_GET)
HANDLE_OP(WASM_OP_TABLE_SET)
HANDLE_OP(WASM_OP_REF_NULL)
HANDLE_OP(WASM_OP_REF_IS_NULL)
HANDLE_OP(WASM_OP_REF_FUNC)
#endif
#if WASM_ENABLE_GC == 0
/* SELECT_T is converted to SELECT or SELECT_64 */
HANDLE_OP(WASM_OP_SELECT_T)
HANDLE_OP(WASM_OP_CALL_REF)
HANDLE_OP(WASM_OP_RETURN_CALL_REF)
HANDLE_OP(WASM_OP_REF_EQ)
HANDLE_OP(WASM_OP_REF_AS_NON_NULL)
HANDLE_OP(WASM_OP_BR_ON_NULL)
HANDLE_OP(WASM_OP_BR_ON_NON_NULL)
HANDLE_OP(WASM_OP_GC_PREFIX)
#endif
#if WASM_ENABLE_EXCE_HANDLING == 0
/* if exception handling is disabled, these opcodes issue a trap */
HANDLE_OP(WASM_OP_TRY)
HANDLE_OP(WASM_OP_CATCH)
HANDLE_OP(WASM_OP_THROW)
HANDLE_OP(WASM_OP_RETHROW)
HANDLE_OP(WASM_OP_DELEGATE)
HANDLE_OP(WASM_OP_CATCH_ALL)
HANDLE_OP(EXT_OP_TRY)
#endif
HANDLE_OP(WASM_OP_UNUSED_0x16)
HANDLE_OP(WASM_OP_UNUSED_0x17)
HANDLE_OP(WASM_OP_UNUSED_0x27)
/* optimized op code */
HANDLE_OP(WASM_OP_F32_STORE)
HANDLE_OP(WASM_OP_F64_STORE)
HANDLE_OP(WASM_OP_F32_LOAD)
HANDLE_OP(WASM_OP_F64_LOAD)
HANDLE_OP(EXT_OP_GET_LOCAL_FAST)
HANDLE_OP(WASM_OP_GET_LOCAL)
HANDLE_OP(WASM_OP_DROP)
HANDLE_OP(WASM_OP_DROP_64)
HANDLE_OP(WASM_OP_BLOCK)
HANDLE_OP(WASM_OP_LOOP)
HANDLE_OP(WASM_OP_END)
HANDLE_OP(WASM_OP_NOP)
HANDLE_OP(EXT_OP_BLOCK)
HANDLE_OP(EXT_OP_LOOP)
HANDLE_OP(EXT_OP_IF)
HANDLE_OP(EXT_OP_BR_TABLE_CACHE)
{
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES == 0
continue;
#else
FETCH_OPCODE_AND_DISPATCH();
#endif
#if WASM_ENABLE_TAIL_CALL != 0 || WASM_ENABLE_GC != 0
call_func_from_return_call:
{
uint32 *lp_base = NULL, *lp = NULL;
int i;
if (cur_func->param_cell_num > 0
&& !(lp_base = lp = wasm_runtime_malloc(cur_func->param_cell_num
* sizeof(uint32)))) {
wasm_set_exception(module, "allocate memory failed");
goto got_exception;
}
for (i = 0; i < cur_func->param_count; i++) {
if (cur_func->param_types[i] == VALUE_TYPE_I64
|| cur_func->param_types[i] == VALUE_TYPE_F64) {
PUT_I64_TO_ADDR(
lp, GET_OPERAND(uint64, I64,
2 * (cur_func->param_count - i - 1)));
lp += 2;
}
else {
*lp = GET_OPERAND(uint32, I32,
(2 * (cur_func->param_count - i - 1)));
lp++;
}
}
frame->lp = frame->operand + cur_func->const_cell_num;
if (lp - lp_base > 0) {
word_copy(frame->lp, lp_base, lp - lp_base);
}
if (lp_base)
wasm_runtime_free(lp_base);
FREE_FRAME(exec_env, frame);
frame_ip += cur_func->param_count * sizeof(int16);
wasm_exec_env_set_cur_frame(exec_env, (WASMRuntimeFrame *)prev_frame);
is_return_call = true;
goto call_func_from_entry;
}
#endif /* WASM_ENABLE_TAIL_CALL != 0 || WASM_ENABLE_GC != 0 */
call_func_from_interp:
{
/* Only do the copy when it's called from interpreter. */
WASMInterpFrame *outs_area = wasm_exec_env_wasm_stack_top(exec_env);
int i;
#if WASM_ENABLE_MULTI_MODULE != 0
if (cur_func->is_import_func) {
outs_area->lp = outs_area->operand
+ (cur_func->import_func_inst
? cur_func->import_func_inst->const_cell_num
: 0);
}
else
#endif
{
outs_area->lp = outs_area->operand + cur_func->const_cell_num;
}
if ((uint8 *)(outs_area->lp + cur_func->param_cell_num)
> exec_env->wasm_stack.top_boundary) {
wasm_set_exception(module, "wasm operand stack overflow");
goto got_exception;
}
for (i = 0; i < cur_func->param_count; i++) {
if (cur_func->param_types[i] == VALUE_TYPE_V128) {
PUT_V128_TO_ADDR(
outs_area->lp,
GET_OPERAND_V128(2 * (cur_func->param_count - i - 1)));
outs_area->lp += 4;
}
else if (cur_func->param_types[i] == VALUE_TYPE_I64
|| cur_func->param_types[i] == VALUE_TYPE_F64) {
PUT_I64_TO_ADDR(
outs_area->lp,
GET_OPERAND(uint64, I64,
2 * (cur_func->param_count - i - 1)));
outs_area->lp += 2;
}
#if WASM_ENABLE_GC != 0
else if (wasm_is_type_reftype(cur_func->param_types[i])) {
PUT_REF_TO_ADDR(
outs_area->lp,
GET_OPERAND(void *, REF,
2 * (cur_func->param_count - i - 1)));
CLEAR_FRAME_REF(
*(uint16 *)(frame_ip
+ (2 * (cur_func->param_count - i - 1))));
outs_area->lp += REF_CELL_NUM;
}
#endif
else {
*outs_area->lp = GET_OPERAND(
uint32, I32, (2 * (cur_func->param_count - i - 1)));
outs_area->lp++;
}
}
frame_ip += cur_func->param_count * sizeof(int16);
if (cur_func->ret_cell_num != 0) {
/* Get the first return value's offset. Since loader emit
* all return values' offset so we must skip remain return
* values' offsets.
*/
WASMFuncType *func_type;
if (cur_func->is_import_func)
func_type = cur_func->u.func_import->func_type;
else
func_type = cur_func->u.func->func_type;
frame->ret_offset = GET_OFFSET();
frame_ip += 2 * (func_type->result_count - 1);
}
SYNC_ALL_TO_FRAME();
prev_frame = frame;
#if WASM_ENABLE_TAIL_CALL != 0 || WASM_ENABLE_GC != 0
is_return_call = false;
#endif
}
call_func_from_entry:
{
if (cur_func->is_import_func) {
#if WASM_ENABLE_MULTI_MODULE != 0
if (cur_func->import_func_inst) {
wasm_interp_call_func_import(module, exec_env, cur_func,
prev_frame);
}
else
#endif
{
wasm_interp_call_func_native(module, exec_env, cur_func,
prev_frame);
}
#if WASM_ENABLE_TAIL_CALL != 0 || WASM_ENABLE_GC != 0
if (is_return_call) {
/* the frame was freed before tail calling and
the prev_frame was set as exec_env's cur_frame,
so here we recover context from prev_frame */
RECOVER_CONTEXT(prev_frame);
}
else
#endif
{
prev_frame = frame->prev_frame;
cur_func = frame->function;
UPDATE_ALL_FROM_FRAME();
}
/* update memory size, no need to update memory ptr as
it isn't changed in wasm_enlarge_memory */
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
if (memory)
linear_mem_size = GET_LINEAR_MEMORY_SIZE(memory);
#endif
if (wasm_copy_exception(module, NULL))
goto got_exception;
}
else {
WASMFunction *cur_wasm_func = cur_func->u.func;
uint32 cell_num_of_local_stack;
#if WASM_ENABLE_REF_TYPES != 0 && WASM_ENABLE_GC == 0
uint32 i, local_cell_idx;
#endif
cell_num_of_local_stack = cur_func->param_cell_num
+ cur_func->local_cell_num
+ cur_wasm_func->max_stack_cell_num;
all_cell_num = cur_func->const_cell_num + cell_num_of_local_stack;
#if WASM_ENABLE_GC != 0
/* area of frame_ref */
all_cell_num += (cell_num_of_local_stack + 3) / 4;
/* cells occupied by locals, POP_REF should not clear frame_ref for
* these cells */
local_cell_num =
cur_func->param_cell_num + cur_func->local_cell_num;
#endif
/* param_cell_num, local_cell_num, const_cell_num and
max_stack_cell_num are all no larger than UINT16_MAX (checked
in loader), all_cell_num must be smaller than 1MB */
bh_assert(all_cell_num < 1 * BH_MB);
frame_size = wasm_interp_interp_frame_size(all_cell_num);
if (!(frame = ALLOC_FRAME(exec_env, frame_size, prev_frame))) {
frame = prev_frame;
goto got_exception;
}
/* Initialize the interpreter context. */
frame->function = cur_func;
frame_ip = wasm_get_func_code(cur_func);
frame_ip_end = wasm_get_func_code_end(cur_func);
frame_lp = frame->lp =
frame->operand + cur_wasm_func->const_cell_num;
/* Initialize the consts */
if (cur_wasm_func->const_cell_num > 0) {
word_copy(frame->operand, (uint32 *)cur_wasm_func->consts,
cur_wasm_func->const_cell_num);
}
/* Initialize the local variables */
memset(frame_lp + cur_func->param_cell_num, 0,
(uint32)(cur_func->local_cell_num * 4));
#if WASM_ENABLE_REF_TYPES != 0 && WASM_ENABLE_GC == 0
/* externref/funcref should be NULL_REF rather than 0 */
local_cell_idx = cur_func->param_cell_num;
for (i = 0; i < cur_wasm_func->local_count; i++) {
if (cur_wasm_func->local_types[i] == VALUE_TYPE_EXTERNREF
|| cur_wasm_func->local_types[i] == VALUE_TYPE_FUNCREF) {
*(frame_lp + local_cell_idx) = NULL_REF;
}
local_cell_idx +=
wasm_value_type_cell_num(cur_wasm_func->local_types[i]);
}
#endif
#if WASM_ENABLE_GC != 0
/* frame->ip is used during GC root set enumeration, so we must
* initialized this field here */
frame->ip = frame_ip;
frame_ref = frame->frame_ref =
(uint8 *)(frame->lp + (uint32)cell_num_of_local_stack);
init_frame_refs(frame_ref, (uint32)cell_num_of_local_stack,
cur_func);
#endif
wasm_exec_env_set_cur_frame(exec_env, (WASMRuntimeFrame *)frame);
}
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
HANDLE_OP_END();
}
return_func:
{
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, (WASMRuntimeFrame *)prev_frame);
if (!prev_frame->ip)
/* Called from native. */
return;
RECOVER_CONTEXT(prev_frame);
#if WASM_ENABLE_GC != 0
local_cell_num = cur_func->param_cell_num + cur_func->local_cell_num;
#endif
HANDLE_OP_END();
}
(void)frame_ip_end;
#if WASM_ENABLE_SHARED_MEMORY != 0
unaligned_atomic:
wasm_set_exception(module, "unaligned atomic");
goto got_exception;
#endif
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
out_of_bounds:
wasm_set_exception(module, "out of bounds memory access");
#endif
got_exception:
SYNC_ALL_TO_FRAME();
return;
#if WASM_ENABLE_LABELS_AS_VALUES == 0
}
#else
FETCH_OPCODE_AND_DISPATCH();
#endif
}
#if WASM_ENABLE_LABELS_AS_VALUES != 0
void **
wasm_interp_get_handle_table(void)
{
WASMModuleInstance module;
memset(&module, 0, sizeof(WASMModuleInstance));
wasm_interp_call_func_bytecode(&module, NULL, NULL, NULL);
return global_handle_table;
}
#endif
#if WASM_ENABLE_GC != 0
bool
wasm_interp_traverse_gc_rootset(WASMExecEnv *exec_env, void *heap)
{
WASMInterpFrame *frame;
WASMObjectRef gc_obj;
WASMFunctionInstance *cur_func;
uint8 *frame_ref;
uint32 local_cell_num, i;
frame = wasm_exec_env_get_cur_frame(exec_env);
for (; frame; frame = frame->prev_frame) {
frame_ref = frame->frame_ref;
cur_func = frame->function;
if (!cur_func)
continue;
local_cell_num = cur_func->param_cell_num;
if (frame->ip)
local_cell_num +=
cur_func->local_cell_num + cur_func->u.func->max_stack_cell_num;
for (i = 0; i < local_cell_num; i++) {
if (frame_ref[i]) {
gc_obj = GET_REF_FROM_ADDR(frame->lp + i);
if (wasm_obj_is_created_from_heap(gc_obj)) {
if (mem_allocator_add_root((mem_allocator_t)heap, gc_obj)) {
return false;
}
}
#if UINTPTR_MAX == UINT64_MAX
bh_assert(frame_ref[i + 1]);
i++;
#endif
}
}
}
return true;
}
#endif
void
wasm_interp_call_wasm(WASMModuleInstance *module_inst, WASMExecEnv *exec_env,
WASMFunctionInstance *function, uint32 argc,
uint32 argv[])
{
WASMRuntimeFrame *prev_frame = wasm_exec_env_get_cur_frame(exec_env);
WASMInterpFrame *frame, *outs_area;
/* Allocate sufficient cells for all kinds of return values. */
unsigned all_cell_num =
function->ret_cell_num > 2 ? function->ret_cell_num : 2,
i;
/* This frame won't be used by JITed code, so only allocate interp
frame here. */
unsigned frame_size;
#if WASM_ENABLE_GC != 0
all_cell_num += (all_cell_num + 3) / 4;
#endif
frame_size = wasm_interp_interp_frame_size(all_cell_num);
if (argc < function->param_cell_num) {
char buf[128];
snprintf(buf, sizeof(buf),
"invalid argument count %" PRIu32
", must be no smaller than %" PRIu32,
argc, (uint32)function->param_cell_num);
wasm_set_exception(module_inst, buf);
return;
}
argc = function->param_cell_num;
#if defined(OS_ENABLE_HW_BOUND_CHECK) && WASM_DISABLE_STACK_HW_BOUND_CHECK == 0
/*
* wasm_runtime_detect_native_stack_overflow is done by
* call_wasm_with_hw_bound_check.
*/
#else
if (!wasm_runtime_detect_native_stack_overflow(exec_env)) {
return;
}
#endif
if (!(frame =
ALLOC_FRAME(exec_env, frame_size, (WASMInterpFrame *)prev_frame)))
return;
outs_area = wasm_exec_env_wasm_stack_top(exec_env);
frame->function = NULL;
frame->ip = NULL;
/* There is no local variable. */
frame->lp = frame->operand + 0;
#if WASM_ENABLE_GC != 0
frame->frame_ref =
(uint8 *)(frame->lp
+ (function->ret_cell_num > 2 ? function->ret_cell_num : 2));
#endif
frame->ret_offset = 0;
if ((uint8 *)(outs_area->operand + function->const_cell_num + argc)
> exec_env->wasm_stack.top_boundary) {
wasm_set_exception((WASMModuleInstance *)exec_env->module_inst,
"wasm operand stack overflow");
return;
}
if (argc > 0)
word_copy(outs_area->operand + function->const_cell_num, argv, argc);
wasm_exec_env_set_cur_frame(exec_env, frame);
#if defined(os_writegsbase)
{
WASMMemoryInstance *memory_inst = wasm_get_default_memory(module_inst);
if (memory_inst)
/* write base addr of linear memory to GS segment register */
os_writegsbase(memory_inst->memory_data);
}
#endif
if (function->is_import_func) {
#if WASM_ENABLE_MULTI_MODULE != 0
if (function->import_module_inst) {
LOG_DEBUG("it is a function of a sub module");
wasm_interp_call_func_import(module_inst, exec_env, function,
frame);
}
else
#endif
{
LOG_DEBUG("it is an native function");
wasm_interp_call_func_native(module_inst, exec_env, function,
frame);
}
}
else {
wasm_interp_call_func_bytecode(module_inst, exec_env, function, frame);
}
/* Output the return value to the caller */
if (!wasm_copy_exception(module_inst, NULL)) {
for (i = 0; i < function->ret_cell_num; i++)
argv[i] = *(frame->lp + i);
}
else {
#if WASM_ENABLE_DUMP_CALL_STACK != 0
if (wasm_interp_create_call_stack(exec_env)) {
wasm_interp_dump_call_stack(exec_env, true, NULL, 0);
}
#endif
}
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
FREE_FRAME(exec_env, frame);
#if WASM_ENABLE_OPCODE_COUNTER != 0
wasm_interp_dump_op_count();
#endif
}