This PR adds LLDB formatters so that variables are human-readable when debugging
Rust code in VS Code. This includes Tuple, Slice, String, Vector, Map, Enum etc.
It also distributes a standalone Python version with LLDB. This solution enables high
portability, so Ubuntu 20.04 and 22.04 can for example still be supported with the
same build since glibc is statically linked in the Python build, also making it easier to
support more operating systems in the future.
Known Issues: Enum types are not displayed correctly.
For more details, refer to:
https://github.com/bytecodealliance/wasm-micro-runtime/pull/2219
Compilation in strict mode fails with
```
wasm_micro_runtime/core/shared/platform/android/platform_init.c:122:30:
error: declaration of 'struct epoll_event` will not be visible outside of this
function [-Werror,-Wvisibility]
epoll_pwait(int epfd, struct epoll_event *events, int maxevents, int timeout,
^
1 error generated.
```
Co-authored-by: Misha Gridnev <gridman@google.com>
Writing GS segment register is not allowed on linux-sgx since it is used as
the base address of thread data in 64-bit hw mode. Reported in #2252.
Disable writing it and disable segue optimization for linux-sgx platform.
LLVM PGO (Profile-Guided Optimization) allows the compiler to better optimize code
for how it actually runs. This PR implements the AOT static PGO, and is tested on
Linux x86-64 and x86-32. The basic steps are:
1. Use `wamrc --enable-llvm-pgo -o <aot_file_of_pgo> <wasm_file>`
to generate an instrumented aot file.
2. Compile iwasm with `cmake -DWAMR_BUILD_STATIC_PGO=1` and run
`iwasm --gen-prof-file=<raw_profile_file> <aot_file_of_pgo>`
to generate the raw profile file.
3. Run `llvm-profdata merge -output=<profile_file> <raw_profile_file>`
to merge the raw profile file into the profile file.
4. Run `wamrc --use-prof-file=<profile_file> -o <aot_file> <wasm_file>`
to generate the optimized aot file.
5. Run the optimized aot_file: `iwasm <aot_file>`.
The test scripts are also added for each benchmark, run `test_pgo.sh` under
each benchmark's folder to test the AOT static pgo.
The spec test cases of thread proposal were updated, the `thread` keyword was added
in case `atomic_wait_notify.wast`:
```wast
(thread $T1 (shared (module $Mem))
...
)
(thread $T2 (shared (module $Mem))
...
)
```
We disable these cases since parsing keyword `thread` isn't supported in the
wamr-test-suites script runtest.py yet.
Segue is an optimization technology which uses x86 segment register to store
the WebAssembly linear memory base address, so as to remove most of the cost
of SFI (Software-based Fault Isolation) base addition and free up a general
purpose register, by this way it may:
- Improve the performance of JIT/AOT
- Reduce the footprint of JIT/AOT, the JIT/AOT code generated is smaller
- Reduce the compilation time of JIT/AOT
This PR uses the x86-64 GS segment register to apply the optimization, currently
it supports linux and linux-sgx platforms on x86-64 target. By default it is disabled,
developer can use the option below to enable it for wamrc and iwasm(with LLVM
JIT enabled):
```bash
wamrc --enable-segue=[<flags>] -o output_file wasm_file
iwasm --enable-segue=[<flags>] wasm_file [args...]
```
`flags` can be:
i32.load, i64.load, f32.load, f64.load, v128.load,
i32.store, i64.store, f32.store, f64.store, v128.store
Use comma to separate them, e.g. `--enable-segue=i32.load,i64.store`,
and `--enable-segue` means all flags are added.
Acknowledgement:
Many thanks to Intel Labs, UC San Diego and UT Austin teams for introducing this
technology and the great support and guidance!
Signed-off-by: Wenyong Huang <wenyong.huang@intel.com>
Co-authored-by: Vahldiek-oberwagner, Anjo Lucas <anjo.lucas.vahldiek-oberwagner@intel.com>
Add nightly (UTC time) checks with asan and ubsan, and also put gcc-4.8 build
to nightly run since we don't need to run it with every PR.
Co-authored-by: Maksim Litskevich <makslit@amazon.co.uk>
For some platforms WAMR gets compiled with `CONFIG_HAS_CLOCK_NANOSLEEP=1`,
while `clock_nanosleep` is not present at the platform, which causes compilation error.
Add check for macro `DISABLE_CLOCK_NANOSLEEP` to resolve the issue, only when
the macro isn't defined can the macro `CONFIG_HAS_CLOCK_NANOSLEEP` take effect.
The `DebugConfigurationProvider` was overwriting configurations provided
in `launch.json`. In particular, this for example prevented from specifying a
custom port for the debugger.
Example `launch.json`
```
{
"configurations": [
{
"type": "wamr-debug",
"request": "attach",
"name": "Attach Debugger",
"stopOnEntry": true,
"attachCommands": [
"process connect -p wasm connect://127.0.0.1:1237"
]
}
]
}
```
Co-authored-by: Ben Riegel <benjuri@amazon.com>
Add VX delegation as an external delegation of TFLite, so that several NPU/GPU
(from VeriSilicon, NXP, Amlogic) can be controlled via WASI-NN.
Test Code can work with the X86 simulator.
Fix issue reported in #2172: wasm-c-api `wasm_func_call` may use a wrong exec_env
when multi-threading is enabled, with error "invalid exec env" reported
Fix issue reported in #2149: main instance's `c_api_func_imports` are not passed to
the counterpart of new thread's instance in wasi-threads mode
Fix issue of invalid size calculated to copy `c_api_func_imports` in pthread mode
And refactor the code to use `wasm_cluster_dup_c_api_imports` to copy the
`c_api_func_imports` to new thread for wasi-threads mode and pthread mode.
Currently, if a thread is spawned and raises an exception after the main thread
has finished, iwasm returns with success instead of returning 1 (i.e. error).
Since wasm_runtime_get_wasi_exit_code waits for all threads to finish and only
returns the wasi exit code, this PR performs the exception check again and
returns error if an exception was raised.
Since the Tensorflow library is already installed in many cases(especially in the
case of the embedded system), move the installation code to find_package.
According to the 1999 ISO C standard (C99), size_t is an unsigned integer type of
at least 16 bit (see sections 7.17 and 7.18.3), it may be uint32 in 32-bit platforms:
https://en.cppreference.com/w/cpp/types/size_t
Calling function `size_t min(size_t, size_t)` with two uint64 arguments may get
invalid result.
Co-authored-by: Georgii Rylov <godjan@amazon.co.uk>
Make `hmu_tree_node` struct packed and add 4 padding bytes before `kfc_tree_root_buf`
field in `gc_heap_struct` struct to ensure the `left/right/parent` fields in `hmu_tree_node`
are 8-byte aligned on the 64-bit target which doesn't support unaligned memory access.
Fix the issue reported in #2136.